U. Etxeberria, J. A. Esnaola, I. Ulacia, D. Ugarte, I. Llavori, M. Larrañaga, A. Lopez-Jauregi
{"title":"喷丸强化对多道次焊接接头疲劳强度贡献的数值分析","authors":"U. Etxeberria, J. A. Esnaola, I. Ulacia, D. Ugarte, I. Llavori, M. Larrañaga, A. Lopez-Jauregi","doi":"10.1115/IMECE2018-87720","DOIUrl":null,"url":null,"abstract":"Tensile residual stress (RS) peaks near the weld toe accelerate crack generation and propagation stages reducing dramatically the life of welded components. In order to relief RS, components are typically heat-treated. However, heat treatments can affect the microstructure compromising mechanical properties. In addition, their application in big structures is complex due to size limitations. As an alternative, mechanical treatments such as shot peening can be locally applied. Moreover, they generate local compressive stresses in the treated surfaces, which present beneficial effect in the fatigue strength of treated components.\n In the present work, the contribution of shot peening in the fatigue strength of multipass welded joints is numerically evaluated. For that purpose, first the RS stress pattern of a 3 pass butt weld of 10mm thick, 50mm length S275JR plates is calculated. Following, the application of shot peening in the tensile RS area is modelled and the evolution of RS pattern is analyzed. Finally, the fatigue strength of treated and non-treated butt welds is evaluated.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of the Contribution of Shot Peening in the Fatigue Strength of Multipass Welded Joints\",\"authors\":\"U. Etxeberria, J. A. Esnaola, I. Ulacia, D. Ugarte, I. Llavori, M. Larrañaga, A. Lopez-Jauregi\",\"doi\":\"10.1115/IMECE2018-87720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensile residual stress (RS) peaks near the weld toe accelerate crack generation and propagation stages reducing dramatically the life of welded components. In order to relief RS, components are typically heat-treated. However, heat treatments can affect the microstructure compromising mechanical properties. In addition, their application in big structures is complex due to size limitations. As an alternative, mechanical treatments such as shot peening can be locally applied. Moreover, they generate local compressive stresses in the treated surfaces, which present beneficial effect in the fatigue strength of treated components.\\n In the present work, the contribution of shot peening in the fatigue strength of multipass welded joints is numerically evaluated. For that purpose, first the RS stress pattern of a 3 pass butt weld of 10mm thick, 50mm length S275JR plates is calculated. Following, the application of shot peening in the tensile RS area is modelled and the evolution of RS pattern is analyzed. Finally, the fatigue strength of treated and non-treated butt welds is evaluated.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Analysis of the Contribution of Shot Peening in the Fatigue Strength of Multipass Welded Joints
Tensile residual stress (RS) peaks near the weld toe accelerate crack generation and propagation stages reducing dramatically the life of welded components. In order to relief RS, components are typically heat-treated. However, heat treatments can affect the microstructure compromising mechanical properties. In addition, their application in big structures is complex due to size limitations. As an alternative, mechanical treatments such as shot peening can be locally applied. Moreover, they generate local compressive stresses in the treated surfaces, which present beneficial effect in the fatigue strength of treated components.
In the present work, the contribution of shot peening in the fatigue strength of multipass welded joints is numerically evaluated. For that purpose, first the RS stress pattern of a 3 pass butt weld of 10mm thick, 50mm length S275JR plates is calculated. Following, the application of shot peening in the tensile RS area is modelled and the evolution of RS pattern is analyzed. Finally, the fatigue strength of treated and non-treated butt welds is evaluated.