分数阶微分掩模的分数阶优化与参数选择方法

Yanzhu Zhang, Minghai Zhang, Yijie Liu, Fandi Wang
{"title":"分数阶微分掩模的分数阶优化与参数选择方法","authors":"Yanzhu Zhang, Minghai Zhang, Yijie Liu, Fandi Wang","doi":"10.1109/ISPACS.2017.8266581","DOIUrl":null,"url":null,"abstract":"When processing the image, The first-order image de-fuzzification template which is defined by the traditional integer differential produces a wide edge, while the second-order template enhances texture and noise. In order to avoid the side effects of the integer differential template, this paper constructs the fractional differential mask and constructs the fractional differential mask, In the traditional fractional mask, by setting the parameters manually, the entropy of the image can be used to determine the abundance of the image information as an image test standard, and an entropy optimal fractional differential mask parameter is selected, The simulation results show that the mask can not only keep the low-frequency contour information of the smooth region, but also enhance the texture information of the high-frequency edge and high-frequency in the image. For the severe weather images, the method used in this paper has a good effect, can retain the image information very well.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fractional-order optimization and parametric selection method of fractional differential masks\",\"authors\":\"Yanzhu Zhang, Minghai Zhang, Yijie Liu, Fandi Wang\",\"doi\":\"10.1109/ISPACS.2017.8266581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When processing the image, The first-order image de-fuzzification template which is defined by the traditional integer differential produces a wide edge, while the second-order template enhances texture and noise. In order to avoid the side effects of the integer differential template, this paper constructs the fractional differential mask and constructs the fractional differential mask, In the traditional fractional mask, by setting the parameters manually, the entropy of the image can be used to determine the abundance of the image information as an image test standard, and an entropy optimal fractional differential mask parameter is selected, The simulation results show that the mask can not only keep the low-frequency contour information of the smooth region, but also enhance the texture information of the high-frequency edge and high-frequency in the image. For the severe weather images, the method used in this paper has a good effect, can retain the image information very well.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在处理图像时,由传统整数微分定义的一阶图像去模糊化模板产生宽边缘,而二阶模板增强纹理和噪声。为了避免整数微分模板的副作用,本文构造了分数阶微分掩模,构造了分数阶微分掩模,在传统的分数阶掩模中,通过手动设置参数,利用图像的熵来确定图像信息的丰度,作为图像的测试标准,并选择了一个熵最优的分数阶微分掩模参数;仿真结果表明,掩模既能保持平滑区域的低频轮廓信息,又能增强图像中高频边缘和高频的纹理信息。对于恶劣天气图像,本文采用的方法效果较好,可以很好地保留图像信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fractional-order optimization and parametric selection method of fractional differential masks
When processing the image, The first-order image de-fuzzification template which is defined by the traditional integer differential produces a wide edge, while the second-order template enhances texture and noise. In order to avoid the side effects of the integer differential template, this paper constructs the fractional differential mask and constructs the fractional differential mask, In the traditional fractional mask, by setting the parameters manually, the entropy of the image can be used to determine the abundance of the image information as an image test standard, and an entropy optimal fractional differential mask parameter is selected, The simulation results show that the mask can not only keep the low-frequency contour information of the smooth region, but also enhance the texture information of the high-frequency edge and high-frequency in the image. For the severe weather images, the method used in this paper has a good effect, can retain the image information very well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An anti-copyscheme for laser label based on digitial watermarking A CNN-based segmentation model for segmenting foreground by a probability map A current-feedback method for programming memristor array in bidirectional associative memory Community mining algorithm of complex network based on memetic algorithm Multi-exposure image fusion quality assessment using contrast information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1