具有自动模式切换的混合状态冷凝跟踪器

M. Isard, A. Blake
{"title":"具有自动模式切换的混合状态冷凝跟踪器","authors":"M. Isard, A. Blake","doi":"10.1109/ICCV.1998.710707","DOIUrl":null,"url":null,"abstract":"There is considerable interest in the computer vision community in representing and modelling motion. Motion models are used as predictors to increase the robustness and accuracy of visual trackers, and as classifiers for gesture recognition. This paper presents a significant development of random sampling methods to allow automatic switching between multiple motion models as a natural extension of the tracking process. The Bayesian mixed-state framework is described in its generality, and the example of a bouncing ball is used to demonstrate that a mixed-state model can significantly improve tracking performance in heavy clutter. The relevance of the approach to the problem of gesture recognition is then investigated using a tracker which is able to follow the natural drawing action of a hand holding a pen, and switches state according to the hand's motion.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"398","resultStr":"{\"title\":\"A mixed-state condensation tracker with automatic model-switching\",\"authors\":\"M. Isard, A. Blake\",\"doi\":\"10.1109/ICCV.1998.710707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is considerable interest in the computer vision community in representing and modelling motion. Motion models are used as predictors to increase the robustness and accuracy of visual trackers, and as classifiers for gesture recognition. This paper presents a significant development of random sampling methods to allow automatic switching between multiple motion models as a natural extension of the tracking process. The Bayesian mixed-state framework is described in its generality, and the example of a bouncing ball is used to demonstrate that a mixed-state model can significantly improve tracking performance in heavy clutter. The relevance of the approach to the problem of gesture recognition is then investigated using a tracker which is able to follow the natural drawing action of a hand holding a pen, and switches state according to the hand's motion.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"398\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 398

摘要

计算机视觉社区对运动的表示和建模有相当大的兴趣。运动模型被用作预测器来提高视觉跟踪器的鲁棒性和准确性,并被用作手势识别的分类器。本文提出了随机采样方法的重大发展,允许在多个运动模型之间自动切换,作为跟踪过程的自然扩展。描述了贝叶斯混合状态框架的通用性,并以一个弹跳球为例说明了混合状态模型可以显著提高重杂波下的跟踪性能。然后使用跟踪器来研究该方法与手势识别问题的相关性,该跟踪器能够跟随握笔的手的自然绘图动作,并根据手的运动切换状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mixed-state condensation tracker with automatic model-switching
There is considerable interest in the computer vision community in representing and modelling motion. Motion models are used as predictors to increase the robustness and accuracy of visual trackers, and as classifiers for gesture recognition. This paper presents a significant development of random sampling methods to allow automatic switching between multiple motion models as a natural extension of the tracking process. The Bayesian mixed-state framework is described in its generality, and the example of a bouncing ball is used to demonstrate that a mixed-state model can significantly improve tracking performance in heavy clutter. The relevance of the approach to the problem of gesture recognition is then investigated using a tracker which is able to follow the natural drawing action of a hand holding a pen, and switches state according to the hand's motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1