基于多粒度语义表示的问答系统模型

Rui Zhao, Songyang Wu, Yi Mao, Ning Li
{"title":"基于多粒度语义表示的问答系统模型","authors":"Rui Zhao, Songyang Wu, Yi Mao, Ning Li","doi":"10.1109/ICNISC54316.2021.00119","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of polysemy and overflow words in traditional vector representation methods such as word2vec and glove in question answering system, this paper introduces Elmo language model, char-CNN and traditional natural language features, and makes a complete semantic representation of the original corpus text from multiple language granularity levels A neural network model for multi granularity semantic representation. Experiments on the squad dataset show that the proposed model is superior to the classical bidaf model in terms of accurate matching rate and F1 value.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Question Answering System Model Based on Multi Granularity Semantic Representation\",\"authors\":\"Rui Zhao, Songyang Wu, Yi Mao, Ning Li\",\"doi\":\"10.1109/ICNISC54316.2021.00119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of polysemy and overflow words in traditional vector representation methods such as word2vec and glove in question answering system, this paper introduces Elmo language model, char-CNN and traditional natural language features, and makes a complete semantic representation of the original corpus text from multiple language granularity levels A neural network model for multi granularity semantic representation. Experiments on the squad dataset show that the proposed model is superior to the classical bidaf model in terms of accurate matching rate and F1 value.\",\"PeriodicalId\":396802,\"journal\":{\"name\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC54316.2021.00119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对问答系统中word2vec、glove等传统向量表示方法存在的多义、溢词等问题,本文引入Elmo语言模型、char-CNN和传统自然语言特征,从多语言粒度层次对原始语料库文本进行完整的语义表示,提出了一种多粒度语义表示的神经网络模型。在球队数据集上的实验表明,该模型在准确匹配率和F1值方面都优于经典的bidaf模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Question Answering System Model Based on Multi Granularity Semantic Representation
Aiming at the problems of polysemy and overflow words in traditional vector representation methods such as word2vec and glove in question answering system, this paper introduces Elmo language model, char-CNN and traditional natural language features, and makes a complete semantic representation of the original corpus text from multiple language granularity levels A neural network model for multi granularity semantic representation. Experiments on the squad dataset show that the proposed model is superior to the classical bidaf model in terms of accurate matching rate and F1 value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explore the Performance of Capsule Neural Network Learning Discrete Features Profiling Pumped Storage Power Station via Multi-Sequence Joint Regression Trajectory Tracking Technology for Crawler Rescue Robot Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Molecular and Structure-based Features Design and Optimization of Ultrasonic Fatigue Specimen Based on ANSYS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1