{"title":"光学表面的等离子射流抛光","authors":"Heike Müller, Thomas Arnold","doi":"10.1117/12.2675793","DOIUrl":null,"url":null,"abstract":"Plasma jet polishing of ground freeform optics is presented. Accurate measurement of local maximum surface temperature and a closed-loop for temperature-based power control is necessary to achieve form-preserving uniform surface polishing. Microroughness can be significantly reduced in one step. The roughness after plasma jet polishing in higher spatial frequencies strongly depends on the extend of sub-surface damage and grinding marks.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma jet polishing of optical surfaces\",\"authors\":\"Heike Müller, Thomas Arnold\",\"doi\":\"10.1117/12.2675793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma jet polishing of ground freeform optics is presented. Accurate measurement of local maximum surface temperature and a closed-loop for temperature-based power control is necessary to achieve form-preserving uniform surface polishing. Microroughness can be significantly reduced in one step. The roughness after plasma jet polishing in higher spatial frequencies strongly depends on the extend of sub-surface damage and grinding marks.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2675793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2675793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma jet polishing of ground freeform optics is presented. Accurate measurement of local maximum surface temperature and a closed-loop for temperature-based power control is necessary to achieve form-preserving uniform surface polishing. Microroughness can be significantly reduced in one step. The roughness after plasma jet polishing in higher spatial frequencies strongly depends on the extend of sub-surface damage and grinding marks.