一种改进的特征选择方法

Dongwen Zhang, Peng Wang, J. Qiu, Yan Jiang
{"title":"一种改进的特征选择方法","authors":"Dongwen Zhang, Peng Wang, J. Qiu, Yan Jiang","doi":"10.1109/ICMLC.2010.5581012","DOIUrl":null,"url":null,"abstract":"The paper addresses the feature selection based on Neighborhood Rough Set (NRS) used as evaluation function and Ant Colony Optimization (ACO) as generation procedure. A NRS-based measure is employed as heuristic information of ACO. For the weakness of setting a specified value to the size of neighborhood, a new standard deviation based value is advanced to be the size of neighborhood. Four datasets from UCI are used to evaluate the proposed approach and the experimental results show that the approach has a better performance, and could be a practical algorithm to select features from dataset.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"129 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved approach to feature selection\",\"authors\":\"Dongwen Zhang, Peng Wang, J. Qiu, Yan Jiang\",\"doi\":\"10.1109/ICMLC.2010.5581012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the feature selection based on Neighborhood Rough Set (NRS) used as evaluation function and Ant Colony Optimization (ACO) as generation procedure. A NRS-based measure is employed as heuristic information of ACO. For the weakness of setting a specified value to the size of neighborhood, a new standard deviation based value is advanced to be the size of neighborhood. Four datasets from UCI are used to evaluate the proposed approach and the experimental results show that the approach has a better performance, and could be a practical algorithm to select features from dataset.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"129 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5581012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5581012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了基于邻域粗糙集(NRS)作为评价函数和蚁群优化(ACO)作为生成过程的特征选择。采用基于nrs的度量作为蚁群算法的启发式信息。针对邻域大小不能直接设定值的缺点,提出了一个新的基于标准差的邻域大小。实验结果表明,该方法具有较好的性能,可以作为一种实用的特征选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved approach to feature selection
The paper addresses the feature selection based on Neighborhood Rough Set (NRS) used as evaluation function and Ant Colony Optimization (ACO) as generation procedure. A NRS-based measure is employed as heuristic information of ACO. For the weakness of setting a specified value to the size of neighborhood, a new standard deviation based value is advanced to be the size of neighborhood. Four datasets from UCI are used to evaluate the proposed approach and the experimental results show that the approach has a better performance, and could be a practical algorithm to select features from dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does joint decoding really outperform cascade processing in English-to-Chinese transliteration generation? The role of syllabification The design of energy-saving filtering mechanism for sensor networks Feature-based approach combined with hierarchical classifying strategy to relation extraction The comparative study of different Bayesian classifier models New inverse halftoning using texture-and lookup table-based learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1