一种在线计算的遗传算法及其在系统理论中的应用

Hong-Gi Lee, J. Hong, Hoon Kang, K. Sim
{"title":"一种在线计算的遗传算法及其在系统理论中的应用","authors":"Hong-Gi Lee, J. Hong, Hoon Kang, K. Sim","doi":"10.1109/FUZZY.2009.5277057","DOIUrl":null,"url":null,"abstract":"Even though the genetic algorithm is known to be a very effective method to solve the global minimization problem, it needs much time (a large population size and a large number of generations) for a reliable answer and thus it seems to be inadequate for on-line performance. We propose a population feedback GA scheme. we show the effectiveness of our scheme by finding an observer for the discrete-time nonlinear autonomous systems with simulations.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A genetic algorithms for on-line calculation with application to system theory\",\"authors\":\"Hong-Gi Lee, J. Hong, Hoon Kang, K. Sim\",\"doi\":\"10.1109/FUZZY.2009.5277057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though the genetic algorithm is known to be a very effective method to solve the global minimization problem, it needs much time (a large population size and a large number of generations) for a reliable answer and thus it seems to be inadequate for on-line performance. We propose a population feedback GA scheme. we show the effectiveness of our scheme by finding an observer for the discrete-time nonlinear autonomous systems with simulations.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管已知遗传算法是解决全局最小化问题的一种非常有效的方法,但它需要很长时间(人口规模大,代数多)才能得到可靠的答案,因此它似乎不适合在线性能。提出了一种种群反馈遗传算法。通过对离散时间非线性自治系统的仿真,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genetic algorithms for on-line calculation with application to system theory
Even though the genetic algorithm is known to be a very effective method to solve the global minimization problem, it needs much time (a large population size and a large number of generations) for a reliable answer and thus it seems to be inadequate for on-line performance. We propose a population feedback GA scheme. we show the effectiveness of our scheme by finding an observer for the discrete-time nonlinear autonomous systems with simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1