基于公共稀疏频谱空间模式的四类运动图像脑电数据分类

Berna Akinci, N. G. Gencer
{"title":"基于公共稀疏频谱空间模式的四类运动图像脑电数据分类","authors":"Berna Akinci, N. G. Gencer","doi":"10.1109/BIYOMUT.2009.5130261","DOIUrl":null,"url":null,"abstract":"Brain Computer Interface aims to provide a communication system with external media via thougths. For this purpose, brain signals are acquired from the scalp by EEG device and processed for characterization. In this work, the classification of movement imagery EEG data has been studied for left hand, right hand, foot and tongue movement imagination cases. Common Spatial Patterns (CSP) method and temporal filters have been used in classification and Common Sparse Spectral Spatial Patterns (CSSSP) method has been tried on 4-class motor imagery data in order to improve the accuracy for classification.","PeriodicalId":119026,"journal":{"name":"2009 14th National Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification of 4-class motor imagery EEG data with Common Sparse Spectral Spatial Pattern method\",\"authors\":\"Berna Akinci, N. G. Gencer\",\"doi\":\"10.1109/BIYOMUT.2009.5130261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain Computer Interface aims to provide a communication system with external media via thougths. For this purpose, brain signals are acquired from the scalp by EEG device and processed for characterization. In this work, the classification of movement imagery EEG data has been studied for left hand, right hand, foot and tongue movement imagination cases. Common Spatial Patterns (CSP) method and temporal filters have been used in classification and Common Sparse Spectral Spatial Patterns (CSSSP) method has been tried on 4-class motor imagery data in order to improve the accuracy for classification.\",\"PeriodicalId\":119026,\"journal\":{\"name\":\"2009 14th National Biomedical Engineering Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 14th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2009.5130261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 14th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2009.5130261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脑机接口旨在通过思想提供与外界媒介的通信系统。为此,EEG设备从头皮获取脑信号,并对其进行特征处理。本文研究了左手、右手、脚和舌头运动想象病例的运动图像脑电数据分类。为了提高分类的精度,将公共空间模式(Common Spatial Patterns, CSP)方法和时间滤波器用于分类,并在4类运动图像数据上尝试了公共稀疏光谱空间模式(Common Sparse Spectral Spatial Patterns, CSSSP)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of 4-class motor imagery EEG data with Common Sparse Spectral Spatial Pattern method
Brain Computer Interface aims to provide a communication system with external media via thougths. For this purpose, brain signals are acquired from the scalp by EEG device and processed for characterization. In this work, the classification of movement imagery EEG data has been studied for left hand, right hand, foot and tongue movement imagination cases. Common Spatial Patterns (CSP) method and temporal filters have been used in classification and Common Sparse Spectral Spatial Patterns (CSSSP) method has been tried on 4-class motor imagery data in order to improve the accuracy for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hemodynamic correlates of mental arithmetic task in migraine Extendable intramedullary nail with mechanical loading Comparison of 980-nm and 1070-nm in endovenous laser treatment Feasibility of head imaging using multi-frequency magnetic induction tomography The impact of Daubechies Wavelet performances on Ventricular Tachyarrhythmia Patients for determination of dominant frequency bands in HRV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1