利用智能手机上的加速度计和陀螺仪数据进行人类活动识别

Khimraj, P. Shukla, Ankit Vijayvargiya, R. Kumar
{"title":"利用智能手机上的加速度计和陀螺仪数据进行人类活动识别","authors":"Khimraj, P. Shukla, Ankit Vijayvargiya, R. Kumar","doi":"10.1109/ICONC345789.2020.9117456","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition is a procedure for arranging the activity of an individual utilizing responsive sensors of the smartphone that are influenced by human activity. Its standouts among the most significant building blocks for numerous smartphone applications, for example, medical-related applications, tracking of fitness, context-aware mobile, survey system of human, and so forth. This investigation centers around acknowledgment of human activity utilizing sensors of the smartphone by some machine learning and deep learning characterization approaches. Data received from the accelerometer sensor and gyroscope sensor of the smartphone are grouped to recognize the human activity.","PeriodicalId":155813,"journal":{"name":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Human Activity Recognition using Accelerometer and Gyroscope Data from Smartphones\",\"authors\":\"Khimraj, P. Shukla, Ankit Vijayvargiya, R. Kumar\",\"doi\":\"10.1109/ICONC345789.2020.9117456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Activity Recognition is a procedure for arranging the activity of an individual utilizing responsive sensors of the smartphone that are influenced by human activity. Its standouts among the most significant building blocks for numerous smartphone applications, for example, medical-related applications, tracking of fitness, context-aware mobile, survey system of human, and so forth. This investigation centers around acknowledgment of human activity utilizing sensors of the smartphone by some machine learning and deep learning characterization approaches. Data received from the accelerometer sensor and gyroscope sensor of the smartphone are grouped to recognize the human activity.\",\"PeriodicalId\":155813,\"journal\":{\"name\":\"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONC345789.2020.9117456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONC345789.2020.9117456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

人类活动识别是利用受人类活动影响的智能手机的响应传感器安排个人活动的过程。它在众多智能手机应用程序中最重要的构建模块中脱颖而出,例如,医疗相关应用程序,健身跟踪,上下文感知移动,人体调查系统等等。本研究的中心是通过一些机器学习和深度学习表征方法,利用智能手机的传感器识别人类活动。从智能手机的加速度传感器和陀螺仪传感器接收的数据进行分组,以识别人类活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Activity Recognition using Accelerometer and Gyroscope Data from Smartphones
Human Activity Recognition is a procedure for arranging the activity of an individual utilizing responsive sensors of the smartphone that are influenced by human activity. Its standouts among the most significant building blocks for numerous smartphone applications, for example, medical-related applications, tracking of fitness, context-aware mobile, survey system of human, and so forth. This investigation centers around acknowledgment of human activity utilizing sensors of the smartphone by some machine learning and deep learning characterization approaches. Data received from the accelerometer sensor and gyroscope sensor of the smartphone are grouped to recognize the human activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Planar Inverted-F Antenna for Dual Band Operations Comparing the Existing ERP Modules in Selected Private Universities of Punjab- An Empirical Study Shortest Path Algorithms for Sensor Node Localization for Internet of Things Diabetes Prognostication – An Aptness of Machine Learning Laguerre Function based Model Predictive Control for Multiple Product Inventory System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1