{"title":"动态模态分解的有限样本性能","authors":"Arvind Prasadan, R. Nadakuditi","doi":"10.1109/GlobalSIP.2018.8646587","DOIUrl":null,"url":null,"abstract":"We analyze the Dynamic Mode Decomposition (DMD) algorithm as applied to multivariate time-series data. Our analysis reveals the critical role played by the lag-one cross-correlation, or cross-covariance, terms. We show that when the rows of the multivariate time series matrix can be modeled as linear combinations of lag-one uncorrelated latent time series that have a non-zero lag-one autocorrelation, then in the large sample limit, DMD perfectly recovers, up to a column-wise scaling, the mixing matrix, and thus the latent time series. We validate our findings with numerical simulations, and demonstrate how DMD can be used to unmix mixed audio signals.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"THE FINITE SAMPLE PERFORMANCE OF DYNAMIC MODE DECOMPOSITION\",\"authors\":\"Arvind Prasadan, R. Nadakuditi\",\"doi\":\"10.1109/GlobalSIP.2018.8646587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the Dynamic Mode Decomposition (DMD) algorithm as applied to multivariate time-series data. Our analysis reveals the critical role played by the lag-one cross-correlation, or cross-covariance, terms. We show that when the rows of the multivariate time series matrix can be modeled as linear combinations of lag-one uncorrelated latent time series that have a non-zero lag-one autocorrelation, then in the large sample limit, DMD perfectly recovers, up to a column-wise scaling, the mixing matrix, and thus the latent time series. We validate our findings with numerical simulations, and demonstrate how DMD can be used to unmix mixed audio signals.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE FINITE SAMPLE PERFORMANCE OF DYNAMIC MODE DECOMPOSITION
We analyze the Dynamic Mode Decomposition (DMD) algorithm as applied to multivariate time-series data. Our analysis reveals the critical role played by the lag-one cross-correlation, or cross-covariance, terms. We show that when the rows of the multivariate time series matrix can be modeled as linear combinations of lag-one uncorrelated latent time series that have a non-zero lag-one autocorrelation, then in the large sample limit, DMD perfectly recovers, up to a column-wise scaling, the mixing matrix, and thus the latent time series. We validate our findings with numerical simulations, and demonstrate how DMD can be used to unmix mixed audio signals.