基于大数据模糊分析的入侵检测

F. Jemili, Hajer Bouras
{"title":"基于大数据模糊分析的入侵检测","authors":"F. Jemili, Hajer Bouras","doi":"10.5772/intechopen.99636","DOIUrl":null,"url":null,"abstract":"In today’s world, Intrusion Detection System (IDS) is one of the significant tools used to the improvement of network security, by detecting attacks or abnormal data accesses. Most of existing IDS have many disadvantages such as high false alarm rates and low detection rates. For the IDS, dealing with distributed and massive data constitutes a challenge. Besides, dealing with imprecise data is another challenge. This paper proposes an Intrusion Detection System based on big data fuzzy analytics; Fuzzy C-Means (FCM) method is used to cluster and classify the pre-processed training dataset. The CTU-13 and the UNSW-NB15 are used as distributed and massive datasets to prove the feasibility of the method. The proposed system shows high performance in terms of accuracy, precision, detection rates, and false alarms.","PeriodicalId":376330,"journal":{"name":"Open Data [Working Title]","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrusion Detection Based on Big Data Fuzzy Analytics\",\"authors\":\"F. Jemili, Hajer Bouras\",\"doi\":\"10.5772/intechopen.99636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s world, Intrusion Detection System (IDS) is one of the significant tools used to the improvement of network security, by detecting attacks or abnormal data accesses. Most of existing IDS have many disadvantages such as high false alarm rates and low detection rates. For the IDS, dealing with distributed and massive data constitutes a challenge. Besides, dealing with imprecise data is another challenge. This paper proposes an Intrusion Detection System based on big data fuzzy analytics; Fuzzy C-Means (FCM) method is used to cluster and classify the pre-processed training dataset. The CTU-13 and the UNSW-NB15 are used as distributed and massive datasets to prove the feasibility of the method. The proposed system shows high performance in terms of accuracy, precision, detection rates, and false alarms.\",\"PeriodicalId\":376330,\"journal\":{\"name\":\"Open Data [Working Title]\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Data [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.99636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Data [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.99636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今世界,入侵检测系统(IDS)通过检测攻击或异常数据访问,是提高网络安全性的重要工具之一。现有的入侵检测系统大多存在虚警率高、检测率低等缺点。对于IDS来说,处理分布式和海量数据是一个挑战。此外,处理不精确的数据是另一个挑战。提出了一种基于大数据模糊分析的入侵检测系统;采用模糊c均值(FCM)方法对预处理后的训练数据集进行聚类和分类。以CTU-13和UNSW-NB15作为分布式海量数据集,验证了该方法的可行性。该系统在准确率、精密度、检出率、虚警等方面表现出较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusion Detection Based on Big Data Fuzzy Analytics
In today’s world, Intrusion Detection System (IDS) is one of the significant tools used to the improvement of network security, by detecting attacks or abnormal data accesses. Most of existing IDS have many disadvantages such as high false alarm rates and low detection rates. For the IDS, dealing with distributed and massive data constitutes a challenge. Besides, dealing with imprecise data is another challenge. This paper proposes an Intrusion Detection System based on big data fuzzy analytics; Fuzzy C-Means (FCM) method is used to cluster and classify the pre-processed training dataset. The CTU-13 and the UNSW-NB15 are used as distributed and massive datasets to prove the feasibility of the method. The proposed system shows high performance in terms of accuracy, precision, detection rates, and false alarms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open Government Data: Development, Practice, and Challenges Intrusion Detection Based on Big Data Fuzzy Analytics Knowledge Extraction from Open Data Repository
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1