利用安全pmu防止协同网络物理攻击下的中断

Yudi Huang, Ting-nian He, N. Chaudhuri, T. L. Porta
{"title":"利用安全pmu防止协同网络物理攻击下的中断","authors":"Yudi Huang, Ting-nian He, N. Chaudhuri, T. L. Porta","doi":"10.1109/SmartGridComm51999.2021.9632306","DOIUrl":null,"url":null,"abstract":"Due to the severe consequences of the coordinated cyber-physical attack (CCPA), the design of defenses has gained a lot of attention. A popular defense approach is to eliminate the existence of attacks by either securing existing sensors or deploying secured PMUs. In this work, we improve this approach by lowering the defense target from eliminating attacks to preventing outages in order to reduce the required number of secured PMUs. To this end, we formulate the problem of PMU Placement for Outage Prevention (PPOP) as a tri-level non-linear optimization and transform it into a bi-level mixed-integer linear programming (MILP) problem. Then, we propose an alternating optimization algorithm to solve it optimally. Finally, we evaluate our algorithm on IEEE 30-bus, 57-bus, and 118-bus systems, which demonstrates the advantage of the proposed approach in significantly reducing the required number of secured PMUs.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preventing Outages under Coordinated Cyber-Physical Attack with Secured PMUs\",\"authors\":\"Yudi Huang, Ting-nian He, N. Chaudhuri, T. L. Porta\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the severe consequences of the coordinated cyber-physical attack (CCPA), the design of defenses has gained a lot of attention. A popular defense approach is to eliminate the existence of attacks by either securing existing sensors or deploying secured PMUs. In this work, we improve this approach by lowering the defense target from eliminating attacks to preventing outages in order to reduce the required number of secured PMUs. To this end, we formulate the problem of PMU Placement for Outage Prevention (PPOP) as a tri-level non-linear optimization and transform it into a bi-level mixed-integer linear programming (MILP) problem. Then, we propose an alternating optimization algorithm to solve it optimally. Finally, we evaluate our algorithm on IEEE 30-bus, 57-bus, and 118-bus systems, which demonstrates the advantage of the proposed approach in significantly reducing the required number of secured PMUs.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于协同网络物理攻击(CCPA)的严重后果,防御设计受到了广泛关注。一种流行的防御方法是通过保护现有传感器或部署安全的pmu来消除攻击的存在。在这项工作中,我们通过降低防御目标从消除攻击到防止中断来改进这种方法,以减少所需的安全pmu数量。为此,我们将PMU的停运预防(PPOP)问题表述为一个三层非线性优化问题,并将其转化为一个双层混合整数线性规划(MILP)问题。然后,我们提出了一种交替优化算法来最优求解。最后,我们在IEEE 30总线,57总线和118总线系统上评估了我们的算法,这表明了所提出的方法在显着减少所需的安全pmu数量方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preventing Outages under Coordinated Cyber-Physical Attack with Secured PMUs
Due to the severe consequences of the coordinated cyber-physical attack (CCPA), the design of defenses has gained a lot of attention. A popular defense approach is to eliminate the existence of attacks by either securing existing sensors or deploying secured PMUs. In this work, we improve this approach by lowering the defense target from eliminating attacks to preventing outages in order to reduce the required number of secured PMUs. To this end, we formulate the problem of PMU Placement for Outage Prevention (PPOP) as a tri-level non-linear optimization and transform it into a bi-level mixed-integer linear programming (MILP) problem. Then, we propose an alternating optimization algorithm to solve it optimally. Finally, we evaluate our algorithm on IEEE 30-bus, 57-bus, and 118-bus systems, which demonstrates the advantage of the proposed approach in significantly reducing the required number of secured PMUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1