{"title":"全局满足局部:基于类别感知弱监督的有效多标签图像分类","authors":"Jiawei Zhan, J. Liu, Wei Tang, Guannan Jiang, Xi Wang, Bin-Bin Gao, Tianliang Zhang, Wenlong Wu, Wei Zhang, Chengjie Wang, Yuan Xie","doi":"10.1145/3503161.3547834","DOIUrl":null,"url":null,"abstract":"Multi-label image classification, which can be categorized into label-dependency and region-based methods, is a challenging problem due to the complex underlying object layouts. Although region-based methods are less likely to encounter issues with model generalizability than label-dependency methods, they often generate hundreds of meaningless or noisy proposals with non-discriminative information, and the contextual dependency among the localized regions is often ignored or over-simplified. This paper builds a unified framework to perform effective noisy-proposal suppression and to interact between global and local features for robust feature learning. Specifically, we propose category-aware weak supervision to concentrate on non-existent categories so as to provide deterministic information for local feature learning, restricting the local branch to focus on more high-quality regions of interest. Moreover, we develop a cross-granularity attention module to explore the complementary information between global and local features, which can build the high-order feature correlation containing not only global-to-local, but also local-to-local relations. Both advantages guarantee a boost in the performance of the whole network. Extensive experiments on two large-scale datasets (MS-COCO and VOC 2007) demonstrate that our framework achieves superior performance over state-of-the-art methods.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global Meets Local: Effective Multi-Label Image Classification via Category-Aware Weak Supervision\",\"authors\":\"Jiawei Zhan, J. Liu, Wei Tang, Guannan Jiang, Xi Wang, Bin-Bin Gao, Tianliang Zhang, Wenlong Wu, Wei Zhang, Chengjie Wang, Yuan Xie\",\"doi\":\"10.1145/3503161.3547834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label image classification, which can be categorized into label-dependency and region-based methods, is a challenging problem due to the complex underlying object layouts. Although region-based methods are less likely to encounter issues with model generalizability than label-dependency methods, they often generate hundreds of meaningless or noisy proposals with non-discriminative information, and the contextual dependency among the localized regions is often ignored or over-simplified. This paper builds a unified framework to perform effective noisy-proposal suppression and to interact between global and local features for robust feature learning. Specifically, we propose category-aware weak supervision to concentrate on non-existent categories so as to provide deterministic information for local feature learning, restricting the local branch to focus on more high-quality regions of interest. Moreover, we develop a cross-granularity attention module to explore the complementary information between global and local features, which can build the high-order feature correlation containing not only global-to-local, but also local-to-local relations. Both advantages guarantee a boost in the performance of the whole network. Extensive experiments on two large-scale datasets (MS-COCO and VOC 2007) demonstrate that our framework achieves superior performance over state-of-the-art methods.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3547834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3547834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Meets Local: Effective Multi-Label Image Classification via Category-Aware Weak Supervision
Multi-label image classification, which can be categorized into label-dependency and region-based methods, is a challenging problem due to the complex underlying object layouts. Although region-based methods are less likely to encounter issues with model generalizability than label-dependency methods, they often generate hundreds of meaningless or noisy proposals with non-discriminative information, and the contextual dependency among the localized regions is often ignored or over-simplified. This paper builds a unified framework to perform effective noisy-proposal suppression and to interact between global and local features for robust feature learning. Specifically, we propose category-aware weak supervision to concentrate on non-existent categories so as to provide deterministic information for local feature learning, restricting the local branch to focus on more high-quality regions of interest. Moreover, we develop a cross-granularity attention module to explore the complementary information between global and local features, which can build the high-order feature correlation containing not only global-to-local, but also local-to-local relations. Both advantages guarantee a boost in the performance of the whole network. Extensive experiments on two large-scale datasets (MS-COCO and VOC 2007) demonstrate that our framework achieves superior performance over state-of-the-art methods.