{"title":"铸造技术:在重力压铸工艺中用再生铝生产零件的一种替代方法","authors":"Narducci Carlos Jr.","doi":"10.5772/intechopen.99983","DOIUrl":null,"url":null,"abstract":"This work applied the grain refinement technique by heterogeneous nucleation and precipitation hardening to investigate the effect of size and morphology of β-Fe particles on Al-Si alloys\\' mechanical behavior Fe-critical, inoculated via Nb+B and heat-treated. The samples for the microstructural analyses were produced according to the standard mold, Test Procedure-1 (TP-1) and, analyzed by optical microscope with polarised light and filter plate and differential interference contrast (DIC) and by X-ray energy dispersive spectroscopy (XRD SEM) with EDS detector analyzer. The specimens for the mechanical tests were cast in a metal mold according to ASTM B108. The combined effect of manipulating the studied alloy Al10Si1Fe0.35Mg resulted in reduced and spheroidized β-Fe precipitates with improved mechanical properties in the material. Properties are similar to those achieved by commercially used alloys with engineering applications in structural and safety parts.","PeriodicalId":398928,"journal":{"name":"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Casting Techniques: An Alternative for Producing Parts with Recycled Al in the Gravity Die Casting Process\",\"authors\":\"Narducci Carlos Jr.\",\"doi\":\"10.5772/intechopen.99983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work applied the grain refinement technique by heterogeneous nucleation and precipitation hardening to investigate the effect of size and morphology of β-Fe particles on Al-Si alloys\\\\' mechanical behavior Fe-critical, inoculated via Nb+B and heat-treated. The samples for the microstructural analyses were produced according to the standard mold, Test Procedure-1 (TP-1) and, analyzed by optical microscope with polarised light and filter plate and differential interference contrast (DIC) and by X-ray energy dispersive spectroscopy (XRD SEM) with EDS detector analyzer. The specimens for the mechanical tests were cast in a metal mold according to ASTM B108. The combined effect of manipulating the studied alloy Al10Si1Fe0.35Mg resulted in reduced and spheroidized β-Fe precipitates with improved mechanical properties in the material. Properties are similar to those achieved by commercially used alloys with engineering applications in structural and safety parts.\",\"PeriodicalId\":398928,\"journal\":{\"name\":\"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.99983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.99983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Casting Techniques: An Alternative for Producing Parts with Recycled Al in the Gravity Die Casting Process
This work applied the grain refinement technique by heterogeneous nucleation and precipitation hardening to investigate the effect of size and morphology of β-Fe particles on Al-Si alloys\' mechanical behavior Fe-critical, inoculated via Nb+B and heat-treated. The samples for the microstructural analyses were produced according to the standard mold, Test Procedure-1 (TP-1) and, analyzed by optical microscope with polarised light and filter plate and differential interference contrast (DIC) and by X-ray energy dispersive spectroscopy (XRD SEM) with EDS detector analyzer. The specimens for the mechanical tests were cast in a metal mold according to ASTM B108. The combined effect of manipulating the studied alloy Al10Si1Fe0.35Mg resulted in reduced and spheroidized β-Fe precipitates with improved mechanical properties in the material. Properties are similar to those achieved by commercially used alloys with engineering applications in structural and safety parts.