Pub Date : 2021-10-05DOI: 10.5772/intechopen.99983
Narducci Carlos Jr.
This work applied the grain refinement technique by heterogeneous nucleation and precipitation hardening to investigate the effect of size and morphology of β-Fe particles on Al-Si alloys' mechanical behavior Fe-critical, inoculated via Nb+B and heat-treated. The samples for the microstructural analyses were produced according to the standard mold, Test Procedure-1 (TP-1) and, analyzed by optical microscope with polarised light and filter plate and differential interference contrast (DIC) and by X-ray energy dispersive spectroscopy (XRD SEM) with EDS detector analyzer. The specimens for the mechanical tests were cast in a metal mold according to ASTM B108. The combined effect of manipulating the studied alloy Al10Si1Fe0.35Mg resulted in reduced and spheroidized β-Fe precipitates with improved mechanical properties in the material. Properties are similar to those achieved by commercially used alloys with engineering applications in structural and safety parts.
{"title":"Casting Techniques: An Alternative for Producing Parts with Recycled Al in the Gravity Die Casting Process","authors":"Narducci Carlos Jr.","doi":"10.5772/intechopen.99983","DOIUrl":"https://doi.org/10.5772/intechopen.99983","url":null,"abstract":"This work applied the grain refinement technique by heterogeneous nucleation and precipitation hardening to investigate the effect of size and morphology of β-Fe particles on Al-Si alloys' mechanical behavior Fe-critical, inoculated via Nb+B and heat-treated. The samples for the microstructural analyses were produced according to the standard mold, Test Procedure-1 (TP-1) and, analyzed by optical microscope with polarised light and filter plate and differential interference contrast (DIC) and by X-ray energy dispersive spectroscopy (XRD SEM) with EDS detector analyzer. The specimens for the mechanical tests were cast in a metal mold according to ASTM B108. The combined effect of manipulating the studied alloy Al10Si1Fe0.35Mg resulted in reduced and spheroidized β-Fe precipitates with improved mechanical properties in the material. Properties are similar to those achieved by commercially used alloys with engineering applications in structural and safety parts.","PeriodicalId":398928,"journal":{"name":"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124287680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-11DOI: 10.5772/intechopen.99162
G. A. S. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, M. Villanueva, C. Mingala
The advent of molecular biology and biotechnology has given ease and comfort for the screening and detection of different animal diseases caused by bacterial, viral, and fungal pathogens. Furthermore, detection of antibiotics and its residues has advanced in recent years. However, most of the process of animal disease diagnostics is still confined in the laboratory. The next step to conduct surveillance and prevent the spread of animal infectious diseases is to detect these diseases in the field. Through the discovery and continuous development in the field of nanobiotechnology, it was found that incorporation of noble metal nanoparticles to biotechnology tools such as the loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs) and dipsticks provided a promising start to conduct point-of-care diagnostics. Moreover, the modification and application of nanoparticle noble metals has increased the stability, effectiveness, sensitivity and overall efficacy of these diagnostic tools. Thus, recent advances in disease diagnostics used these noble metals such as gold, silver and platinum.
{"title":"Application of Noble Metals in the Advances in Animal Disease Diagnostics","authors":"G. A. S. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, M. Villanueva, C. Mingala","doi":"10.5772/intechopen.99162","DOIUrl":"https://doi.org/10.5772/intechopen.99162","url":null,"abstract":"The advent of molecular biology and biotechnology has given ease and comfort for the screening and detection of different animal diseases caused by bacterial, viral, and fungal pathogens. Furthermore, detection of antibiotics and its residues has advanced in recent years. However, most of the process of animal disease diagnostics is still confined in the laboratory. The next step to conduct surveillance and prevent the spread of animal infectious diseases is to detect these diseases in the field. Through the discovery and continuous development in the field of nanobiotechnology, it was found that incorporation of noble metal nanoparticles to biotechnology tools such as the loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs) and dipsticks provided a promising start to conduct point-of-care diagnostics. Moreover, the modification and application of nanoparticle noble metals has increased the stability, effectiveness, sensitivity and overall efficacy of these diagnostic tools. Thus, recent advances in disease diagnostics used these noble metals such as gold, silver and platinum.","PeriodicalId":398928,"journal":{"name":"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125466363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-14DOI: 10.5772/INTECHOPEN.98473
S. Waghmode, A. Dudhane, Vaibhav P. Mhaindarkar
The biosynthesis of silver nanoparticles (AgNPs) has become more significant in the recent years owing to its applications in catalysis, imaging, drug delivery, nano-device fabrication and in medicine. We propose the synthesis of silver nanoparticles from the plant extract of Syzygium cumini and evaluation of its antibacterial and chemocatalytic potential. Synthesis of AgNPs carried out by using aqueous silver nitrate. The UV–Vis absorption spectrum of the synthesized AgNPs showed a broad absorption peak at 470 nm. TEM analysis shows the morphology of AgNPs as a hexagonal matrix with average particle size is about 50 nm. XRD analysis displays the crystalline structure of AgNPs. The presence of elemental silver was confirmed with EDX analysis. FTIR analysis shows that amide groups present in proteins are dominant reducing agents and play an important role in the bioreduction of Ag+ ions to Ag0. The bioreduced AgNPs demonstrated significant catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 in an aqueous condition. The biosynthesized AgNPs have potent antibacterial activity against common clinical pathogens. Considering the remarkable antibacterial activity against common pathogenic microorganisms, AgNPs can be used in the pharmaceutical industries.
{"title":"Syzygium cumini Mediated Green Synthesis of Silver Nanoparticles for Reduction of 4-Nitrophenol and Assessment of its Antibacterial Activity","authors":"S. Waghmode, A. Dudhane, Vaibhav P. Mhaindarkar","doi":"10.5772/INTECHOPEN.98473","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.98473","url":null,"abstract":"The biosynthesis of silver nanoparticles (AgNPs) has become more significant in the recent years owing to its applications in catalysis, imaging, drug delivery, nano-device fabrication and in medicine. We propose the synthesis of silver nanoparticles from the plant extract of Syzygium cumini and evaluation of its antibacterial and chemocatalytic potential. Synthesis of AgNPs carried out by using aqueous silver nitrate. The UV–Vis absorption spectrum of the synthesized AgNPs showed a broad absorption peak at 470 nm. TEM analysis shows the morphology of AgNPs as a hexagonal matrix with average particle size is about 50 nm. XRD analysis displays the crystalline structure of AgNPs. The presence of elemental silver was confirmed with EDX analysis. FTIR analysis shows that amide groups present in proteins are dominant reducing agents and play an important role in the bioreduction of Ag+ ions to Ag0. The bioreduced AgNPs demonstrated significant catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 in an aqueous condition. The biosynthesized AgNPs have potent antibacterial activity against common clinical pathogens. Considering the remarkable antibacterial activity against common pathogenic microorganisms, AgNPs can be used in the pharmaceutical industries.","PeriodicalId":398928,"journal":{"name":"Noble Metals and Intermetallic Compounds - Recent Advanced Studies and Applications [Working Title]","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127730229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}