利用关联概念分析从儿童癌症数据中挖掘异质关联

Mickael Wajnberg, Petko Valtchev, A. Massé, A. Benmoussa, M. Krajinovic, C. Laverdière, E. Levy, D. Sinnett, V. Marcil
{"title":"利用关联概念分析从儿童癌症数据中挖掘异质关联","authors":"Mickael Wajnberg, Petko Valtchev, A. Massé, A. Benmoussa, M. Krajinovic, C. Laverdière, E. Levy, D. Sinnett, V. Marcil","doi":"10.1109/ICDMW51313.2020.00085","DOIUrl":null,"url":null,"abstract":"To gain an in-depth understanding of human diseases, biologists typically mine patient data for relevant patterns. Clinical datasets are often unlabeled and involve features, a.k.a. markers, split into classes w.r.t. biological functions, whereby target patterns might well mix both levels. As such heterogeneous patterns are beyond the reach of current analytical tools, dedicated miners, e.g. for association rules, need to be devised. Contemporary multi-relational (MR) association miners, while capable of mixing object types, are rather limited in rule shape (atomic conclusions) while ignoring feature composition. Our own approach builds upon a MR-extension of concept analysis further enhanced with flexible propositionnalisation operators and dedicated MR modeling of patient data. The resulting MR association miner was validated on a pediatric oncology dataset.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mining Heterogeneous Associations from Pediatric Cancer Data by Relational Concept Analysis\",\"authors\":\"Mickael Wajnberg, Petko Valtchev, A. Massé, A. Benmoussa, M. Krajinovic, C. Laverdière, E. Levy, D. Sinnett, V. Marcil\",\"doi\":\"10.1109/ICDMW51313.2020.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To gain an in-depth understanding of human diseases, biologists typically mine patient data for relevant patterns. Clinical datasets are often unlabeled and involve features, a.k.a. markers, split into classes w.r.t. biological functions, whereby target patterns might well mix both levels. As such heterogeneous patterns are beyond the reach of current analytical tools, dedicated miners, e.g. for association rules, need to be devised. Contemporary multi-relational (MR) association miners, while capable of mixing object types, are rather limited in rule shape (atomic conclusions) while ignoring feature composition. Our own approach builds upon a MR-extension of concept analysis further enhanced with flexible propositionnalisation operators and dedicated MR modeling of patient data. The resulting MR association miner was validated on a pediatric oncology dataset.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了深入了解人类疾病,生物学家通常会从患者数据中挖掘相关模式。临床数据集通常是未标记的,涉及特征,也就是标记,分为两类,即生物功能,因此目标模式可能混合了这两种水平。由于这种异构模式超出了当前分析工具的范围,因此需要设计专门的挖掘器,例如关联规则。当代的多关系(MR)关联挖掘器虽然能够混合对象类型,但在规则形状(原子结论)方面相当有限,而忽略了特征组成。我们自己的方法建立在概念分析的核磁共振扩展的基础上,进一步增强了灵活的定位操作和患者数据的专用核磁共振建模。生成的MR关联挖掘器在儿科肿瘤学数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Heterogeneous Associations from Pediatric Cancer Data by Relational Concept Analysis
To gain an in-depth understanding of human diseases, biologists typically mine patient data for relevant patterns. Clinical datasets are often unlabeled and involve features, a.k.a. markers, split into classes w.r.t. biological functions, whereby target patterns might well mix both levels. As such heterogeneous patterns are beyond the reach of current analytical tools, dedicated miners, e.g. for association rules, need to be devised. Contemporary multi-relational (MR) association miners, while capable of mixing object types, are rather limited in rule shape (atomic conclusions) while ignoring feature composition. Our own approach builds upon a MR-extension of concept analysis further enhanced with flexible propositionnalisation operators and dedicated MR modeling of patient data. The resulting MR association miner was validated on a pediatric oncology dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1