YFCC100M HybridNet fc6基于内容的图像检索深度特征

Giuseppe Amato, F. Falchi, C. Gennaro, F. Rabitti
{"title":"YFCC100M HybridNet fc6基于内容的图像检索深度特征","authors":"Giuseppe Amato, F. Falchi, C. Gennaro, F. Rabitti","doi":"10.1145/2983554.2983557","DOIUrl":null,"url":null,"abstract":"This paper presents a corpus of deep features extracted from the YFCC100M images considering the fc6 hidden layer activation of the HybridNet deep convolutional neural network. For a set of random selected queries we made available k-NN results obtained sequentially scanning the entire set features comparing both using the Euclidean and Hamming Distance on a binarized version of the features. This set of results is ground truth for evaluating Content-Based Image Retrieval (CBIR) systems that use approximate similarity search methods for efficient and scalable indexing. Moreover, we present experimental results obtained indexing this corpus with two distinct approaches: the Metric Inverted File and the Lucene Quantization. These two CBIR systems are public available online allowing real-time search using both internal and external queries.","PeriodicalId":340803,"journal":{"name":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval\",\"authors\":\"Giuseppe Amato, F. Falchi, C. Gennaro, F. Rabitti\",\"doi\":\"10.1145/2983554.2983557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a corpus of deep features extracted from the YFCC100M images considering the fc6 hidden layer activation of the HybridNet deep convolutional neural network. For a set of random selected queries we made available k-NN results obtained sequentially scanning the entire set features comparing both using the Euclidean and Hamming Distance on a binarized version of the features. This set of results is ground truth for evaluating Content-Based Image Retrieval (CBIR) systems that use approximate similarity search methods for efficient and scalable indexing. Moreover, we present experimental results obtained indexing this corpus with two distinct approaches: the Metric Inverted File and the Lucene Quantization. These two CBIR systems are public available online allowing real-time search using both internal and external queries.\",\"PeriodicalId\":340803,\"journal\":{\"name\":\"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983554.2983557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983554.2983557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

考虑HybridNet深度卷积神经网络的fc6隐藏层激活,本文提出了从YFCC100M图像中提取的深度特征语料库。对于一组随机选择的查询,我们使用k-NN结果对整个特征集进行顺序扫描,并在特征的二值化版本上使用欧氏距离和汉明距离进行比较。这组结果是评估基于内容的图像检索(CBIR)系统的基本事实,该系统使用近似相似搜索方法进行高效和可扩展的索引。此外,我们给出了用两种不同的方法对语料库进行索引的实验结果:度量倒档和Lucene量化。这两个CBIR系统是在线公开的,允许使用内部和外部查询进行实时搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
This paper presents a corpus of deep features extracted from the YFCC100M images considering the fc6 hidden layer activation of the HybridNet deep convolutional neural network. For a set of random selected queries we made available k-NN results obtained sequentially scanning the entire set features comparing both using the Euclidean and Hamming Distance on a binarized version of the features. This set of results is ground truth for evaluating Content-Based Image Retrieval (CBIR) systems that use approximate similarity search methods for efficient and scalable indexing. Moreover, we present experimental results obtained indexing this corpus with two distinct approaches: the Metric Inverted File and the Lucene Quantization. These two CBIR systems are public available online allowing real-time search using both internal and external queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Which Languages do People Speak on Flickr?: A Language and Geo-Location Study of the YFCC100m Dataset Analysis of Spatial, Temporal, and Content Characteristics of Videos in the YFCC100M Dataset YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval Developing Benchmarks: The Importance of the Process and New Paradigms In-depth Exploration of Geotagging Performance using Sampling Strategies on YFCC100M
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1