基于贝叶斯网络的交换活动的依赖保持概率建模

S. Bhanja, N. Ranganathan
{"title":"基于贝叶斯网络的交换活动的依赖保持概率建模","authors":"S. Bhanja, N. Ranganathan","doi":"10.1145/378239.378465","DOIUrl":null,"url":null,"abstract":"We propose a new switching probability model for combinational circuits using a logic-induced-directed-acyclic-graph (LIDBG) and prove that such a graph corresponds to a Bayesian network guaranteed to map all the dependencies inherent in the circuit. This switching activity can be estimated by capturing complex dependencies (spatiotemporal and conditional) among signals efficiently by local message-passing based on the Bayesian networks. Switching activity estimation of ISCAS and MCNC circuits with random input streams yield high accuracy (average mean error=0.002) and low computational time (average time=3.93 seconds).","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Dependency preserving probabilistic modeling of switching activity using Bayesian networks\",\"authors\":\"S. Bhanja, N. Ranganathan\",\"doi\":\"10.1145/378239.378465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new switching probability model for combinational circuits using a logic-induced-directed-acyclic-graph (LIDBG) and prove that such a graph corresponds to a Bayesian network guaranteed to map all the dependencies inherent in the circuit. This switching activity can be estimated by capturing complex dependencies (spatiotemporal and conditional) among signals efficiently by local message-passing based on the Bayesian networks. Switching activity estimation of ISCAS and MCNC circuits with random input streams yield high accuracy (average mean error=0.002) and low computational time (average time=3.93 seconds).\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.378465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.378465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们利用逻辑诱导有向无环图(LIDBG)提出了一种新的组合电路切换概率模型,并证明了这种图对应于保证映射电路中所有固有依赖关系的贝叶斯网络。这种交换活动可以通过基于贝叶斯网络的本地消息传递有效地捕获信号之间的复杂依赖关系(时空和条件)来估计。随机输入流的ISCAS和MCNC电路的开关活动估计精度高(平均误差=0.002),计算时间短(平均时间=3.93秒)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dependency preserving probabilistic modeling of switching activity using Bayesian networks
We propose a new switching probability model for combinational circuits using a logic-induced-directed-acyclic-graph (LIDBG) and prove that such a graph corresponds to a Bayesian network guaranteed to map all the dependencies inherent in the circuit. This switching activity can be estimated by capturing complex dependencies (spatiotemporal and conditional) among signals efficiently by local message-passing based on the Bayesian networks. Switching activity estimation of ISCAS and MCNC circuits with random input streams yield high accuracy (average mean error=0.002) and low computational time (average time=3.93 seconds).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
False coupling interactions in static timing analysis Scalable hybrid verification of complex microprocessors System-level power/performance analysis for embedded systems design Automated pipeline design Test strategies for BIST at the algorithmic and register-transfer levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1