基于多项式拟合的电磁定位标定研究

Hongjie Wang, Hengxu Wang, T. Jiang, Yuqi Yuan
{"title":"基于多项式拟合的电磁定位标定研究","authors":"Hongjie Wang, Hengxu Wang, T. Jiang, Yuqi Yuan","doi":"10.1109/APCAP.2018.8538122","DOIUrl":null,"url":null,"abstract":"Electromagnetic positioning systems are now widely used in virtual reality technology and their accuracy directly affects the interaction process which suffers from the distortions of the electromagnetic field used in calculating the tracker sensor's position. The calibration process of the electromagnetic positioning system mainly compensates and eliminates the static error, and relates to the equipment and the environment around the electromagnetic positioning system. The equipment used in the experiment was Pholhemus's 3SPACE FASTRAK, which was used in a training system. In this paper, taking into account factors such as algorithm complexity and predictability, second-order polynomial fitting and third-order polynomial fitting algorithms are used to compensate for position and orientation errors of the sensor. Experimental and simulation results show that the third-order polynomial fitting has greatly improved the position and direction accuracy.","PeriodicalId":198124,"journal":{"name":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Electromagnetic Positioning Calibration based on a Polynomial Fitting\",\"authors\":\"Hongjie Wang, Hengxu Wang, T. Jiang, Yuqi Yuan\",\"doi\":\"10.1109/APCAP.2018.8538122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic positioning systems are now widely used in virtual reality technology and their accuracy directly affects the interaction process which suffers from the distortions of the electromagnetic field used in calculating the tracker sensor's position. The calibration process of the electromagnetic positioning system mainly compensates and eliminates the static error, and relates to the equipment and the environment around the electromagnetic positioning system. The equipment used in the experiment was Pholhemus's 3SPACE FASTRAK, which was used in a training system. In this paper, taking into account factors such as algorithm complexity and predictability, second-order polynomial fitting and third-order polynomial fitting algorithms are used to compensate for position and orientation errors of the sensor. Experimental and simulation results show that the third-order polynomial fitting has greatly improved the position and direction accuracy.\",\"PeriodicalId\":198124,\"journal\":{\"name\":\"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAP.2018.8538122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP.2018.8538122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电磁定位系统在虚拟现实技术中得到了广泛的应用,其精度直接影响到跟踪传感器位置计算过程中电磁场的畸变。电磁定位系统的标定过程主要是补偿和消除静态误差,与电磁定位系统的设备和周围环境有关。实验中使用的设备是Pholhemus的3SPACE FASTRAK,用于训练系统。本文考虑到算法的复杂性和可预测性等因素,分别采用二阶多项式拟合和三阶多项式拟合算法对传感器的位置和方向误差进行补偿。实验和仿真结果表明,三阶多项式拟合大大提高了定位精度和方向精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Electromagnetic Positioning Calibration based on a Polynomial Fitting
Electromagnetic positioning systems are now widely used in virtual reality technology and their accuracy directly affects the interaction process which suffers from the distortions of the electromagnetic field used in calculating the tracker sensor's position. The calibration process of the electromagnetic positioning system mainly compensates and eliminates the static error, and relates to the equipment and the environment around the electromagnetic positioning system. The equipment used in the experiment was Pholhemus's 3SPACE FASTRAK, which was used in a training system. In this paper, taking into account factors such as algorithm complexity and predictability, second-order polynomial fitting and third-order polynomial fitting algorithms are used to compensate for position and orientation errors of the sensor. Experimental and simulation results show that the third-order polynomial fitting has greatly improved the position and direction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vibrations Monitoring for Highway Bridge Using mm-Wave Radar A New Lumped Circuit Modelling Technique for EBG Based on Surface Current Flow Performance Analyses of Perfectly Matched Layer Applied to the Node-based RPIM Method The Design of a Compact, Wide Bandwidth, Non-Foster-Based Substrate Integrated Waveguide Filter Compact Direction Finding Array for Tactical Aircraft Radios Through Artificial Neural Networks Estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1