{"title":"AIXI的可计算变体,比AIXItl更强大","authors":"Susumu Katayama","doi":"10.2478/jagi-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents Unlimited Computable AI, or UCAI, that is a family of computable variants of AIXI. UCAI is more powerful than AIXItl, which is a conventional family of computable variants of AIXI, in the following ways: 1) UCAI supports models of terminating computation, including typed lambda calculi, while AIXItl only supports Turing machine with timeout ˜t, which can be simulated by typed lambda calculi for any ˜t; 2) unlike UCAI, AIXItl limits the program length to some ˜l .","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computable Variants of AIXI which are More Powerful than AIXItl\",\"authors\":\"Susumu Katayama\",\"doi\":\"10.2478/jagi-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents Unlimited Computable AI, or UCAI, that is a family of computable variants of AIXI. UCAI is more powerful than AIXItl, which is a conventional family of computable variants of AIXI, in the following ways: 1) UCAI supports models of terminating computation, including typed lambda calculi, while AIXItl only supports Turing machine with timeout ˜t, which can be simulated by typed lambda calculi for any ˜t; 2) unlike UCAI, AIXItl limits the program length to some ˜l .\",\"PeriodicalId\":247142,\"journal\":{\"name\":\"Journal of Artificial General Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial General Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jagi-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jagi-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computable Variants of AIXI which are More Powerful than AIXItl
Abstract This paper presents Unlimited Computable AI, or UCAI, that is a family of computable variants of AIXI. UCAI is more powerful than AIXItl, which is a conventional family of computable variants of AIXI, in the following ways: 1) UCAI supports models of terminating computation, including typed lambda calculi, while AIXItl only supports Turing machine with timeout ˜t, which can be simulated by typed lambda calculi for any ˜t; 2) unlike UCAI, AIXItl limits the program length to some ˜l .