{"title":"基于二维概率分布的领域模型自主学习","authors":"Witold Sowiski, Frank Guerin","doi":"10.1109/DEVLRN.2013.6652524","DOIUrl":null,"url":null,"abstract":"An autonomous agent placed without any prior knowledge in an environment without goals or a reward function will need to develop a model of that environment using an unguided approach by discovering patters occurring in its observations. We expand on a prior algorithm which allows an agent to achieve that by learning clusters in probability distributions of one-dimensional sensory variables and propose a novel quadtree-based algorithm for two dimensions. We then evaluate it in a dynamic continuous domain involving a ball being thrown onto uneven terrain, simulated using a physics engine. Finally, we put forward criteria which can be used to evaluate a domain model without requiring goals and apply them to our work. We show that adding two-dimensional rules to the algorithm improves the model and that such models can be transferred to similar but previously-unseen environments.","PeriodicalId":106997,"journal":{"name":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous learning of domain models using two-dimensional probability distributions\",\"authors\":\"Witold Sowiski, Frank Guerin\",\"doi\":\"10.1109/DEVLRN.2013.6652524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An autonomous agent placed without any prior knowledge in an environment without goals or a reward function will need to develop a model of that environment using an unguided approach by discovering patters occurring in its observations. We expand on a prior algorithm which allows an agent to achieve that by learning clusters in probability distributions of one-dimensional sensory variables and propose a novel quadtree-based algorithm for two dimensions. We then evaluate it in a dynamic continuous domain involving a ball being thrown onto uneven terrain, simulated using a physics engine. Finally, we put forward criteria which can be used to evaluate a domain model without requiring goals and apply them to our work. We show that adding two-dimensional rules to the algorithm improves the model and that such models can be transferred to similar but previously-unseen environments.\",\"PeriodicalId\":106997,\"journal\":{\"name\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2013.6652524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2013.6652524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous learning of domain models using two-dimensional probability distributions
An autonomous agent placed without any prior knowledge in an environment without goals or a reward function will need to develop a model of that environment using an unguided approach by discovering patters occurring in its observations. We expand on a prior algorithm which allows an agent to achieve that by learning clusters in probability distributions of one-dimensional sensory variables and propose a novel quadtree-based algorithm for two dimensions. We then evaluate it in a dynamic continuous domain involving a ball being thrown onto uneven terrain, simulated using a physics engine. Finally, we put forward criteria which can be used to evaluate a domain model without requiring goals and apply them to our work. We show that adding two-dimensional rules to the algorithm improves the model and that such models can be transferred to similar but previously-unseen environments.