物理分析和非监督学习的异常检测

B. Nachman
{"title":"物理分析和非监督学习的异常检测","authors":"B. Nachman","doi":"10.1142/9789811234033_0004","DOIUrl":null,"url":null,"abstract":"Modern machine learning tools offer exciting possibilities to qualitatively change the paradigm for new particle searches. In particular, new methods can broaden the search program by gaining sensitivity to unforeseen scenarios by learning directly from data. There has been a significant growth in new ideas and they are just starting to be applied to experimental data. This chapter introduces these new anomaly detection methods, which range from fully supervised algorithms to unsupervised, and include weakly supervised methods.","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Anomaly Detection for Physics Analysis and Less Than Supervised Learning\",\"authors\":\"B. Nachman\",\"doi\":\"10.1142/9789811234033_0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern machine learning tools offer exciting possibilities to qualitatively change the paradigm for new particle searches. In particular, new methods can broaden the search program by gaining sensitivity to unforeseen scenarios by learning directly from data. There has been a significant growth in new ideas and they are just starting to be applied to experimental data. This chapter introduces these new anomaly detection methods, which range from fully supervised algorithms to unsupervised, and include weakly supervised methods.\",\"PeriodicalId\":416365,\"journal\":{\"name\":\"Artificial Intelligence for High Energy Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence for High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811234033_0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence for High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811234033_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

现代机器学习工具为从本质上改变新粒子搜索的范式提供了令人兴奋的可能性。特别是,新方法可以通过直接从数据中学习来获得对不可预见情况的敏感性,从而扩大搜索程序。新想法有了显著的增长,它们才刚刚开始应用于实验数据。本章介绍了这些新的异常检测方法,从完全监督算法到无监督算法,包括弱监督方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly Detection for Physics Analysis and Less Than Supervised Learning
Modern machine learning tools offer exciting possibilities to qualitatively change the paradigm for new particle searches. In particular, new methods can broaden the search program by gaining sensitivity to unforeseen scenarios by learning directly from data. There has been a significant growth in new ideas and they are just starting to be applied to experimental data. This chapter introduces these new anomaly detection methods, which range from fully supervised algorithms to unsupervised, and include weakly supervised methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering FRONT MATTER Machine Learning for Triggering and Data Acquisition Generative Models for Fast Simulation End-to-End Analyses Using Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1