首页 > 最新文献

Artificial Intelligence for High Energy Physics最新文献

英文 中文
Machine Learning for Triggering and Data Acquisition 用于触发和数据采集的机器学习
Pub Date : 2022-02-06 DOI: 10.1142/9789811234033_0009
Philip W. Harris, Nhan Tran
{"title":"Machine Learning for Triggering and Data Acquisition","authors":"Philip W. Harris, Nhan Tran","doi":"10.1142/9789811234033_0009","DOIUrl":"https://doi.org/10.1142/9789811234033_0009","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117173785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle Identification in Neutrino Detectors 中微子探测器中的粒子识别
Pub Date : 2022-02-06 DOI: 10.1142/9789811234026_0014
R. Sharankova, T. Wongjirad
{"title":"Particle Identification in Neutrino Detectors","authors":"R. Sharankova, T. Wongjirad","doi":"10.1142/9789811234026_0014","DOIUrl":"https://doi.org/10.1142/9789811234026_0014","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134060504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning from Four Vectors 四个向量的深度学习
Pub Date : 2022-02-06 DOI: 10.1142/9789811234026_0003
P. Baldi, Peter Sadowski, D. Whiteson
An early example of the ability of deep networks to improve the statistical power of data collected in particle physics experiments was the demonstration that such networks operating on lists of particle momenta (four-vectors) could outperform shallow networks using features engineered with domain knowledge. A benchmark case is described, with extensions to parameterized networks. A discussion of data handling and architecture is presented, as well as a description of how to incorporate physics knowledge into the network architecture.
深度网络提高粒子物理实验中收集的数据统计能力的一个早期例子是,这种基于粒子动量(四向量)列表的网络可以胜过使用领域知识设计的特征的浅层网络。描述了一个基准案例,并扩展到参数化网络。讨论了数据处理和体系结构,并描述了如何将物理知识纳入网络体系结构。
{"title":"Deep Learning from Four Vectors","authors":"P. Baldi, Peter Sadowski, D. Whiteson","doi":"10.1142/9789811234026_0003","DOIUrl":"https://doi.org/10.1142/9789811234026_0003","url":null,"abstract":"An early example of the ability of deep networks to improve the statistical power of data collected in particle physics experiments was the demonstration that such networks operating on lists of particle momenta (four-vectors) could outperform shallow networks using features engineered with domain knowledge. A benchmark case is described, with extensions to parameterized networks. A discussion of data handling and architecture is presented, as well as a description of how to incorporate physics knowledge into the network architecture.","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131227867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FRONT MATTER 前页
Pub Date : 2022-02-06 DOI: 10.1142/9789811234026_fmatter
P. Calafiura, D. Rousseau, K. Terao
{"title":"FRONT MATTER","authors":"P. Calafiura, D. Rousseau, K. Terao","doi":"10.1142/9789811234026_fmatter","DOIUrl":"https://doi.org/10.1142/9789811234026_fmatter","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115821691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering 聚类
Pub Date : 2022-02-06 DOI: 10.1142/9789811234026_0011
K. Terao
{"title":"Clustering","authors":"K. Terao","doi":"10.1142/9789811234026_0011","DOIUrl":"https://doi.org/10.1142/9789811234026_0011","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"228 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114098924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence-Based Learning 序列学习
Pub Date : 2022-02-06 DOI: 10.1142/9789811234026_0015
R. Teixeira de Lima
{"title":"Sequence-Based Learning","authors":"R. Teixeira de Lima","doi":"10.1142/9789811234026_0015","DOIUrl":"https://doi.org/10.1142/9789811234026_0015","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125214841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dealing with Nuisance Parameters 处理滋扰参数
Pub Date : 2022-02-06 DOI: 10.1142/9789811234026_0017
T. Dorigo, P. De Castro Manzano
{"title":"Dealing with Nuisance Parameters","authors":"T. Dorigo, P. De Castro Manzano","doi":"10.1142/9789811234026_0017","DOIUrl":"https://doi.org/10.1142/9789811234026_0017","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124651497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Clustering 聚类
Pub Date : 2022-02-06 DOI: 10.1142/9789811234033_0011
K. Terao
{"title":"Clustering","authors":"K. Terao","doi":"10.1142/9789811234033_0011","DOIUrl":"https://doi.org/10.1142/9789811234033_0011","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130393567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-End Analyses Using Image Classification 端到端分析使用图像分类
Pub Date : 2022-02-06 DOI: 10.1142/9789811234033_0010
Adam Aurisano, L. Whitehead
End-to-end analyses of data from high-energy physics experiments using machine and deep learning techniques have emerged in recent years. These analyses use deep learning algorithms to go directly from low-level detector information directly to high-level quantities that classify the interactions. The most popular class of algorithms for these analyses are convolutional neural networks that operate on experimental data formatted as images. End-to-end analyses skip stages of the traditional workflow that includes the reconstruction of particles produced in the interactions, and as such are not limited by efficiency losses and sources of inaccuracy throughout the event reconstruction process. In many cases, deep learning end-to-end analyses have been shown to have significantly increased performance compared to previous state-of-the-art methods.
近年来,利用机器和深度学习技术对高能物理实验数据进行端到端分析已经出现。这些分析使用深度学习算法直接从低级检测器信息直接到高级数量,对相互作用进行分类。这些分析中最流行的一类算法是卷积神经网络,它将实验数据格式化为图像。端到端分析跳过了传统工作流程的各个阶段,包括在相互作用中产生的粒子的重建,因此不受整个事件重建过程中效率损失和不准确来源的限制。在许多情况下,与以前最先进的方法相比,深度学习端到端分析已经显示出显著提高的性能。
{"title":"End-to-End Analyses Using Image Classification","authors":"Adam Aurisano, L. Whitehead","doi":"10.1142/9789811234033_0010","DOIUrl":"https://doi.org/10.1142/9789811234033_0010","url":null,"abstract":"End-to-end analyses of data from high-energy physics experiments using machine and deep learning techniques have emerged in recent years. These analyses use deep learning algorithms to go directly from low-level detector information directly to high-level quantities that classify the interactions. The most popular class of algorithms for these analyses are convolutional neural networks that operate on experimental data formatted as images. End-to-end analyses skip stages of the traditional workflow that includes the reconstruction of particles produced in the interactions, and as such are not limited by efficiency losses and sources of inaccuracy throughout the event reconstruction process. In many cases, deep learning end-to-end analyses have been shown to have significantly increased performance compared to previous state-of-the-art methods.","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122292146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generative Models for Fast Simulation 快速仿真的生成模型
Pub Date : 2022-02-06 DOI: 10.1142/9789811234033_0006
Michela Paganini, Luke de Oliveira, B. Nachman, D. Derkach, F. Ratnikov, Andrey Ustyuzhanin, A. Ghosh
{"title":"Generative Models for Fast Simulation","authors":"Michela Paganini, Luke de Oliveira, B. Nachman, D. Derkach, F. Ratnikov, Andrey Ustyuzhanin, A. Ghosh","doi":"10.1142/9789811234033_0006","DOIUrl":"https://doi.org/10.1142/9789811234033_0006","url":null,"abstract":"","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117220474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Artificial Intelligence for High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1