基于零空间盲源分离的胎儿异位心电信号提取

L. Taha, E. Abdel-Raheem
{"title":"基于零空间盲源分离的胎儿异位心电信号提取","authors":"L. Taha, E. Abdel-Raheem","doi":"10.1109/CCECE47787.2020.9255816","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to apply blind source separation (BSS) to extract fetal electrocardiogram (FECG) signal with ectopic beat. We use a novel deterministic BSS algorithm type null space transformation matrix (NSITM). The ECG signals are used to compute the ITM. Then, the FECG signal and maternal ECG (MECG) signals are extracted from the null space of the ITM. Results from Physionet synthesized ECG data show considerable improvement in extraction performance (quality signal-to-noise ratio qSNR and correlation $r$) over other algorithms used in this work, when the fetal-to-maternal signal-to-noise ratio (fmSNR) increases from −30 dB to 0 dB. Using the NSITM algorithm, the maximum values of qSNR and $r$ are 5.95 dB and 0.871, respectively, when fmSNR is equal to 0 dB. The minimum values of qSNR and $r$ are 2.27 dB and 0.726, respectively, when fmSNR is equal to −30 dB. The study demonstrates that the BSS type NSITM is a feasible algorithm for extracting FECG signals for subjects with ectopic beats.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Fetal ECG Signal with Ectopic Beats using Blind Source Separation Based Null Space Approach\",\"authors\":\"L. Taha, E. Abdel-Raheem\",\"doi\":\"10.1109/CCECE47787.2020.9255816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to apply blind source separation (BSS) to extract fetal electrocardiogram (FECG) signal with ectopic beat. We use a novel deterministic BSS algorithm type null space transformation matrix (NSITM). The ECG signals are used to compute the ITM. Then, the FECG signal and maternal ECG (MECG) signals are extracted from the null space of the ITM. Results from Physionet synthesized ECG data show considerable improvement in extraction performance (quality signal-to-noise ratio qSNR and correlation $r$) over other algorithms used in this work, when the fetal-to-maternal signal-to-noise ratio (fmSNR) increases from −30 dB to 0 dB. Using the NSITM algorithm, the maximum values of qSNR and $r$ are 5.95 dB and 0.871, respectively, when fmSNR is equal to 0 dB. The minimum values of qSNR and $r$ are 2.27 dB and 0.726, respectively, when fmSNR is equal to −30 dB. The study demonstrates that the BSS type NSITM is a feasible algorithm for extracting FECG signals for subjects with ectopic beats.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是应用盲源分离(BSS)技术提取异位搏胎儿心电图信号。我们使用了一种新的确定性BSS算法——零空间变换矩阵(NSITM)。心电信号被用来计算ITM。然后,从ITM的零空间中提取feg信号和母体ECG (MECG)信号。结果表明,当胎儿与母亲的信噪比(fmSNR)从−30 dB增加到0 dB时,与本研究中使用的其他算法相比,Physionet合成的ECG数据的提取性能(质量信噪比qSNR和相关性$r$)有了显著改善。使用NSITM算法,当fmSNR = 0 dB时,qSNR和$r$的最大值分别为5.95 dB和0.871。当fmSNR =−30 dB时,qSNR和$r$的最小值分别为2.27 dB和0.726。研究表明,BSS型NSITM是一种可行的提取异位心跳受试者脑电图信号的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of Fetal ECG Signal with Ectopic Beats using Blind Source Separation Based Null Space Approach
The aim of this paper is to apply blind source separation (BSS) to extract fetal electrocardiogram (FECG) signal with ectopic beat. We use a novel deterministic BSS algorithm type null space transformation matrix (NSITM). The ECG signals are used to compute the ITM. Then, the FECG signal and maternal ECG (MECG) signals are extracted from the null space of the ITM. Results from Physionet synthesized ECG data show considerable improvement in extraction performance (quality signal-to-noise ratio qSNR and correlation $r$) over other algorithms used in this work, when the fetal-to-maternal signal-to-noise ratio (fmSNR) increases from −30 dB to 0 dB. Using the NSITM algorithm, the maximum values of qSNR and $r$ are 5.95 dB and 0.871, respectively, when fmSNR is equal to 0 dB. The minimum values of qSNR and $r$ are 2.27 dB and 0.726, respectively, when fmSNR is equal to −30 dB. The study demonstrates that the BSS type NSITM is a feasible algorithm for extracting FECG signals for subjects with ectopic beats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking Control of Force, Position, and Contour for an Excavator with Co-simulation Dual-Modality Cardiac Data Real-Time Rendering and Synchronization in Web Browsers FPGA-Based Evaluation and Implementation of an Automotive RADAR Signal Processing System using High-Level Synthesis A New Capacitive MEMS Flow Sensor for Industrial Gas Transport Monitoring Applications Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1