汽车场景的3D地面点分类

Julia Nitsch, J. Aguilar, Juan I. Nieto, R. Siegwart, M. Schmidt, César Cadena
{"title":"汽车场景的3D地面点分类","authors":"Julia Nitsch, J. Aguilar, Juan I. Nieto, R. Siegwart, M. Schmidt, César Cadena","doi":"10.1109/ITSC.2018.8569898","DOIUrl":null,"url":null,"abstract":"Autonomous driving applications must be provided with information about other road users and road side infrastructure by object detection modules. These modules often process point clouds sensed by light detection and ranging (LiDAR) sensors. Within the captured point cloud a large amount of points correspond to physical locations on the ground. These points do not hold information about road users, obstacles or road side infrastructure. Thus an important preprocessing step is identifying ground points to allow the object detection focusing on relevant measurements only. Within this paper we propose a ground point classification which relies on simple but effective geometric features. We evaluate the accuracy of the proposed algorithm on simulated data of different traffic scenarios. In addition, we evaluate the effectiveness of this preprocessing step based on the achieved speed up of an object detection algorithm on real world data.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D Ground Point Classification for Automotive Scenarios\",\"authors\":\"Julia Nitsch, J. Aguilar, Juan I. Nieto, R. Siegwart, M. Schmidt, César Cadena\",\"doi\":\"10.1109/ITSC.2018.8569898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving applications must be provided with information about other road users and road side infrastructure by object detection modules. These modules often process point clouds sensed by light detection and ranging (LiDAR) sensors. Within the captured point cloud a large amount of points correspond to physical locations on the ground. These points do not hold information about road users, obstacles or road side infrastructure. Thus an important preprocessing step is identifying ground points to allow the object detection focusing on relevant measurements only. Within this paper we propose a ground point classification which relies on simple but effective geometric features. We evaluate the accuracy of the proposed algorithm on simulated data of different traffic scenarios. In addition, we evaluate the effectiveness of this preprocessing step based on the achieved speed up of an object detection algorithm on real world data.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动驾驶应用程序必须通过物体检测模块提供其他道路使用者和道路侧基础设施的信息。这些模块通常处理由光探测和测距(LiDAR)传感器感知的点云。在捕获的点云中,大量的点对应于地面上的物理位置。这些点不包含道路使用者、障碍物或路边基础设施的信息。因此,一个重要的预处理步骤是确定接地点,使目标检测只关注相关测量。本文提出了一种基于简单而有效的几何特征的地面点分类方法。我们在不同交通场景的模拟数据上评估了所提算法的准确性。此外,我们基于目标检测算法在真实世界数据上实现的加速来评估该预处理步骤的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Ground Point Classification for Automotive Scenarios
Autonomous driving applications must be provided with information about other road users and road side infrastructure by object detection modules. These modules often process point clouds sensed by light detection and ranging (LiDAR) sensors. Within the captured point cloud a large amount of points correspond to physical locations on the ground. These points do not hold information about road users, obstacles or road side infrastructure. Thus an important preprocessing step is identifying ground points to allow the object detection focusing on relevant measurements only. Within this paper we propose a ground point classification which relies on simple but effective geometric features. We evaluate the accuracy of the proposed algorithm on simulated data of different traffic scenarios. In addition, we evaluate the effectiveness of this preprocessing step based on the achieved speed up of an object detection algorithm on real world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Small Satellites and Connected Vehicles for Large-Scale Traffic Monitoring in Road Network Applications of train routing selection methods for real-time railway traffic management To Merge Early or Late: Analysis of Traffic Flow and Energy Impact in a Reduced Lane Scenario Future Mobility Sensing: An Intelligent Mobility Data Collection and Visualization Platform Large Scale Performance Assessment of the Lighthill-Whitham-Richards Model on a Smart Motorway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1