模型集成计算在机器人控制中合成实时嵌入式代码

R. Höpler, Pieter J. Mosterman
{"title":"模型集成计算在机器人控制中合成实时嵌入式代码","authors":"R. Höpler, Pieter J. Mosterman","doi":"10.1109/CCA.2001.973961","DOIUrl":null,"url":null,"abstract":"Manufacturing robots present a class of embedded systems with hard real-time constraints. On the one hand controller software has to satisfy tight timing constraints and rigorous memory requirements. Especially nonlinear dynamics and kinematics models are vital to modern model-based controllers and trajectory planning algorithms. Often this is still realized by manually coding and optimizing the software, a labor intensive and error-prone repetitive process. On the other hand shorter design-cycles and a growing number of customer-specific robots demand more flexibility not just in modeling. This paper presents a model-integrated computing approach to automated code synthesis of dynamics models that satisfies the harsh demands by including domain and problem specific constraints prescribed by the robotics application. It is shown that the use of such tailored formalisms leads to very efficient embedded software, competitive with the hand optimized alternative. At the same time it combines flexibility in model specification and usage with the potential for dynamic adaptation and reconfiguration of the model.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Model integrated computing in robot control to synthesize real-time embedded code\",\"authors\":\"R. Höpler, Pieter J. Mosterman\",\"doi\":\"10.1109/CCA.2001.973961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing robots present a class of embedded systems with hard real-time constraints. On the one hand controller software has to satisfy tight timing constraints and rigorous memory requirements. Especially nonlinear dynamics and kinematics models are vital to modern model-based controllers and trajectory planning algorithms. Often this is still realized by manually coding and optimizing the software, a labor intensive and error-prone repetitive process. On the other hand shorter design-cycles and a growing number of customer-specific robots demand more flexibility not just in modeling. This paper presents a model-integrated computing approach to automated code synthesis of dynamics models that satisfies the harsh demands by including domain and problem specific constraints prescribed by the robotics application. It is shown that the use of such tailored formalisms leads to very efficient embedded software, competitive with the hand optimized alternative. At the same time it combines flexibility in model specification and usage with the potential for dynamic adaptation and reconfiguration of the model.\",\"PeriodicalId\":365390,\"journal\":{\"name\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2001.973961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

制造机器人是一类具有硬实时性约束的嵌入式系统。一方面,控制器软件必须满足严格的时序约束和严格的内存要求。特别是非线性动力学和运动学模型对于现代基于模型的控制器和轨迹规划算法至关重要。通常这仍然是通过手动编码和优化软件来实现的,这是一个劳动密集型和容易出错的重复过程。另一方面,更短的设计周期和越来越多的客户定制机器人需要更多的灵活性,而不仅仅是在建模方面。本文提出了一种模型集成计算方法来实现动态模型的自动代码合成,该方法通过包含机器人应用规定的领域和问题特定约束来满足苛刻的要求。它表明,使用这种定制的形式导致非常高效的嵌入式软件,与手工优化的替代方案竞争。同时,它将模型规范和使用的灵活性与模型的动态适应和重新配置的潜力结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model integrated computing in robot control to synthesize real-time embedded code
Manufacturing robots present a class of embedded systems with hard real-time constraints. On the one hand controller software has to satisfy tight timing constraints and rigorous memory requirements. Especially nonlinear dynamics and kinematics models are vital to modern model-based controllers and trajectory planning algorithms. Often this is still realized by manually coding and optimizing the software, a labor intensive and error-prone repetitive process. On the other hand shorter design-cycles and a growing number of customer-specific robots demand more flexibility not just in modeling. This paper presents a model-integrated computing approach to automated code synthesis of dynamics models that satisfies the harsh demands by including domain and problem specific constraints prescribed by the robotics application. It is shown that the use of such tailored formalisms leads to very efficient embedded software, competitive with the hand optimized alternative. At the same time it combines flexibility in model specification and usage with the potential for dynamic adaptation and reconfiguration of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pay-load estimation of a 2DOF flexible link robot using a delta-operator technique A mechatronics library for SIMULINK An adaptive sliding observer for sensorless control of synchronous motors Position and orientation estimation based on Kalman filtering of stereo images Quasi-unknown input observers for linear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1