大规模并行无损数据解压缩

Evangelia A. Sitaridi, René Müller, T. Kaldewey, G. Lohman, K. A. Ross
{"title":"大规模并行无损数据解压缩","authors":"Evangelia A. Sitaridi, René Müller, T. Kaldewey, G. Lohman, K. A. Ross","doi":"10.1109/ICPP.2016.35","DOIUrl":null,"url":null,"abstract":"Today's exponentially increasing data volumes and the high cost of storage make compression essential for the Big Data industry. Although research has concentrated on efficient compression, fast decompression is critical for analytics queries that repeatedly read compressed data. While decompression can be parallelized somewhat by assigning each data block to a different process, break-through speed-ups require exploiting the massive parallelism of modern multi-core processors and GPUs for data decompression within a block. We propose two new techniques to increase the degree of parallelism during decompression. The first technique exploits the massive parallelism of GPU and SIMD architectures. The second sacrifices some compression efficiency to eliminate data dependencies that limit parallelism during decompression. We evaluate these techniques on the decompressor of the DEFLATE scheme, called Inflate, which is based on LZ77 compression and Huffman encoding. We achieve a 2× speed-up in a head-to-head comparison with several multi core CPU-based libraries, while achieving a 17% energy saving with comparable compression ratios.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Massively-Parallel Lossless Data Decompression\",\"authors\":\"Evangelia A. Sitaridi, René Müller, T. Kaldewey, G. Lohman, K. A. Ross\",\"doi\":\"10.1109/ICPP.2016.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's exponentially increasing data volumes and the high cost of storage make compression essential for the Big Data industry. Although research has concentrated on efficient compression, fast decompression is critical for analytics queries that repeatedly read compressed data. While decompression can be parallelized somewhat by assigning each data block to a different process, break-through speed-ups require exploiting the massive parallelism of modern multi-core processors and GPUs for data decompression within a block. We propose two new techniques to increase the degree of parallelism during decompression. The first technique exploits the massive parallelism of GPU and SIMD architectures. The second sacrifices some compression efficiency to eliminate data dependencies that limit parallelism during decompression. We evaluate these techniques on the decompressor of the DEFLATE scheme, called Inflate, which is based on LZ77 compression and Huffman encoding. We achieve a 2× speed-up in a head-to-head comparison with several multi core CPU-based libraries, while achieving a 17% energy saving with comparable compression ratios.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

如今,数据量呈指数级增长,存储成本高,压缩对大数据行业至关重要。尽管研究集中在高效压缩上,但快速解压缩对于重复读取压缩数据的分析查询至关重要。虽然可以通过将每个数据块分配给不同的进程来实现解压缩的并行化,但突破性的加速需要利用现代多核处理器和gpu的大量并行性来进行块内的数据解压缩。我们提出了两种新技术来增加解压过程中的并行度。第一种技术利用了GPU和SIMD架构的大规模并行性。第二种方法牺牲了一些压缩效率,以消除在解压缩期间限制并行性的数据依赖关系。我们在基于LZ77压缩和霍夫曼编码的DEFLATE方案的解压器(称为inflation)上评估了这些技术。与几个基于多核cpu的库相比,我们实现了2倍的加速,同时在压缩比相当的情况下实现了17%的节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Massively-Parallel Lossless Data Decompression
Today's exponentially increasing data volumes and the high cost of storage make compression essential for the Big Data industry. Although research has concentrated on efficient compression, fast decompression is critical for analytics queries that repeatedly read compressed data. While decompression can be parallelized somewhat by assigning each data block to a different process, break-through speed-ups require exploiting the massive parallelism of modern multi-core processors and GPUs for data decompression within a block. We propose two new techniques to increase the degree of parallelism during decompression. The first technique exploits the massive parallelism of GPU and SIMD architectures. The second sacrifices some compression efficiency to eliminate data dependencies that limit parallelism during decompression. We evaluate these techniques on the decompressor of the DEFLATE scheme, called Inflate, which is based on LZ77 compression and Huffman encoding. We achieve a 2× speed-up in a head-to-head comparison with several multi core CPU-based libraries, while achieving a 17% energy saving with comparable compression ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel k-Means++ for Multiple Shared-Memory Architectures RCHC: A Holistic Runtime System for Concurrent Heterogeneous Computing Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs Improving RAID Performance Using an Endurable SSD Cache PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1