基于鲁棒二值前馈神经网络的逻辑规则提取

Zhang Junying, Bao Zheng
{"title":"基于鲁棒二值前馈神经网络的逻辑规则提取","authors":"Zhang Junying, Bao Zheng","doi":"10.1109/ICOSP.1998.770873","DOIUrl":null,"url":null,"abstract":"This paper, on the basis of the connection weights of robust binary feedforward neural networks (robust BNNs) being -1, 0 or +1, points out that the extraction of logic rules from robust BNNs is much easier than that from ordinary feedforward neural networks. It also puts forward the point that robust BNNs are a perfect unification of a logic knowledge database, an inference machine and an interpretation machine.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of logic rules on the basis of robust binary feedforward neural networks\",\"authors\":\"Zhang Junying, Bao Zheng\",\"doi\":\"10.1109/ICOSP.1998.770873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper, on the basis of the connection weights of robust binary feedforward neural networks (robust BNNs) being -1, 0 or +1, points out that the extraction of logic rules from robust BNNs is much easier than that from ordinary feedforward neural networks. It also puts forward the point that robust BNNs are a perfect unification of a logic knowledge database, an inference machine and an interpretation machine.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在鲁棒二值前馈神经网络(鲁棒bnn)的连接权为- 1,0或+1的基础上,指出从鲁棒bnn中提取逻辑规则比从普通前馈神经网络中提取逻辑规则要容易得多。提出鲁棒神经网络是逻辑知识库、推理机和解释机的完美统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of logic rules on the basis of robust binary feedforward neural networks
This paper, on the basis of the connection weights of robust binary feedforward neural networks (robust BNNs) being -1, 0 or +1, points out that the extraction of logic rules from robust BNNs is much easier than that from ordinary feedforward neural networks. It also puts forward the point that robust BNNs are a perfect unification of a logic knowledge database, an inference machine and an interpretation machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new estimation formula for minimum filter length of optimum FIR digital filters A fuzzy associative memory pattern classifier Randomized method for planar motion estimation and matching points A robust speech feature-perceptive scalogram based on wavelet analysis A new class of feature-orientated motion estimation for motion pictures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1