异构数据集成的富知识模式匹配框架

Chuangtao Ma, B. Molnár, Á. Tarcsi, A. Benczúr
{"title":"异构数据集成的富知识模式匹配框架","authors":"Chuangtao Ma, B. Molnár, Á. Tarcsi, A. Benczúr","doi":"10.1109/CITDS54976.2022.9914350","DOIUrl":null,"url":null,"abstract":"Schema matching is a process of creating the correspondences and mappings from the various schemas, which is a critical phase of migrating and integrating heterogeneous databases from multiple sources. However, the semantic heterogeneity in various schemas brings some obstacles while establishing the correspondences between source schema and target schema, hence human interventions and domain knowledge are required to tackle some complex mapping tasks for heterogeneous data integration. To reduce human intervention and improve the ability to handle complex matching tasks, we present a knowledge-enriched schema matching framework. In this framework, the schema matching task is treated as a classification problem, thereby, a schema matching network is designed as a classifier to give the mapping result. In particular, the external knowledge bases are injected into the schema matching network to capture the background knowledge and provide the common knowledge to handle the semantic heterogeneity of complex mapping tasks. Additionally, the main components of the presented framework and their roles are analyzed, and the feasibility of our framework and the future work are highlighted.","PeriodicalId":271992,"journal":{"name":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge Enriched Schema Matching Framework for Heterogeneous Data Integration\",\"authors\":\"Chuangtao Ma, B. Molnár, Á. Tarcsi, A. Benczúr\",\"doi\":\"10.1109/CITDS54976.2022.9914350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schema matching is a process of creating the correspondences and mappings from the various schemas, which is a critical phase of migrating and integrating heterogeneous databases from multiple sources. However, the semantic heterogeneity in various schemas brings some obstacles while establishing the correspondences between source schema and target schema, hence human interventions and domain knowledge are required to tackle some complex mapping tasks for heterogeneous data integration. To reduce human intervention and improve the ability to handle complex matching tasks, we present a knowledge-enriched schema matching framework. In this framework, the schema matching task is treated as a classification problem, thereby, a schema matching network is designed as a classifier to give the mapping result. In particular, the external knowledge bases are injected into the schema matching network to capture the background knowledge and provide the common knowledge to handle the semantic heterogeneity of complex mapping tasks. Additionally, the main components of the presented framework and their roles are analyzed, and the feasibility of our framework and the future work are highlighted.\",\"PeriodicalId\":271992,\"journal\":{\"name\":\"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITDS54976.2022.9914350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITDS54976.2022.9914350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模式匹配是一个从各种模式中创建对应和映射的过程,这是从多个源迁移和集成异构数据库的关键阶段。然而,由于各种模式之间的语义异构性给源模式和目标模式之间建立对应关系带来了一定的障碍,因此异构数据集成中一些复杂的映射任务需要人工干预和领域知识来解决。为了减少人为干预,提高处理复杂匹配任务的能力,我们提出了一个知识丰富的模式匹配框架。在该框架中,将模式匹配任务视为分类问题,设计了一个模式匹配网络作为分类器给出映射结果。特别地,将外部知识库注入到模式匹配网络中,以获取背景知识,并提供公共知识来处理复杂映射任务的语义异构性。此外,本文还分析了该框架的主要组成部分及其作用,并指出了该框架的可行性和未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Enriched Schema Matching Framework for Heterogeneous Data Integration
Schema matching is a process of creating the correspondences and mappings from the various schemas, which is a critical phase of migrating and integrating heterogeneous databases from multiple sources. However, the semantic heterogeneity in various schemas brings some obstacles while establishing the correspondences between source schema and target schema, hence human interventions and domain knowledge are required to tackle some complex mapping tasks for heterogeneous data integration. To reduce human intervention and improve the ability to handle complex matching tasks, we present a knowledge-enriched schema matching framework. In this framework, the schema matching task is treated as a classification problem, thereby, a schema matching network is designed as a classifier to give the mapping result. In particular, the external knowledge bases are injected into the schema matching network to capture the background knowledge and provide the common knowledge to handle the semantic heterogeneity of complex mapping tasks. Additionally, the main components of the presented framework and their roles are analyzed, and the feasibility of our framework and the future work are highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of a typical cell in the uplink cellular network model using stochastic simulation Image sensor based steering signal for a digital actuator system Clustering-based customer representation learning from dynamic transactional data Joint Transmission Coordinated Multipoint on Mobile Users in 5G Heterogeneous Network Smart watch activity recognition using plot image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1