协同多智能体连续控制的元近端策略优化

Boli Fang, Zhenghao Peng, Hao Sun, Qin Zhang
{"title":"协同多智能体连续控制的元近端策略优化","authors":"Boli Fang, Zhenghao Peng, Hao Sun, Qin Zhang","doi":"10.1109/IJCNN55064.2022.9892004","DOIUrl":null,"url":null,"abstract":"In this paper we propose Multi-Agent Proxy Proximal Policy Optimization (MA3PO), a novel multi-agent deep reinforcement learning algorithm that tackles the challenge of cooperative continuous multi-agent control. Our method is driven by the observation that most existing multi-agent reinforcement learning algorithms mainly focus on discrete state/action spaces and are thus computationally infeasible when extended to environments with continuous state/action spaces. To address the issue of computational complexity and to better model intra-agent collaboration, we make use of the recently successful Proximal Policy Optimization algorithm that effectively explores of continuous action spaces, and incorporate the notion of intrinsic motivation via meta-gradient methods so as to stimulate the behavior of individual agents in cooperative multi-agent settings. Towards these ends, we design proxy rewards to quantify the effect of individual agent-level intrinsic motivation onto the team-level reward, and apply meta-gradient methods to leverage such an addition so that our algorithm can learn the team-level cumulative reward effectively. Experiments on various multi-agent reinforcement learning benchmark environments with continuous action spaces demonstrate that our algorithm is not only comparable with the existing state-of-the-art benchmarks, but also significantly reduces training time complexity.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta Proximal Policy Optimization for Cooperative Multi-Agent Continuous Control\",\"authors\":\"Boli Fang, Zhenghao Peng, Hao Sun, Qin Zhang\",\"doi\":\"10.1109/IJCNN55064.2022.9892004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose Multi-Agent Proxy Proximal Policy Optimization (MA3PO), a novel multi-agent deep reinforcement learning algorithm that tackles the challenge of cooperative continuous multi-agent control. Our method is driven by the observation that most existing multi-agent reinforcement learning algorithms mainly focus on discrete state/action spaces and are thus computationally infeasible when extended to environments with continuous state/action spaces. To address the issue of computational complexity and to better model intra-agent collaboration, we make use of the recently successful Proximal Policy Optimization algorithm that effectively explores of continuous action spaces, and incorporate the notion of intrinsic motivation via meta-gradient methods so as to stimulate the behavior of individual agents in cooperative multi-agent settings. Towards these ends, we design proxy rewards to quantify the effect of individual agent-level intrinsic motivation onto the team-level reward, and apply meta-gradient methods to leverage such an addition so that our algorithm can learn the team-level cumulative reward effectively. Experiments on various multi-agent reinforcement learning benchmark environments with continuous action spaces demonstrate that our algorithm is not only comparable with the existing state-of-the-art benchmarks, but also significantly reduces training time complexity.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的多智能体深度强化学习算法——多智能体代理近端策略优化算法(MA3PO),解决了多智能体协作连续控制的难题。我们的方法是由观察到大多数现有的多智能体强化学习算法主要关注离散状态/动作空间,因此当扩展到具有连续状态/动作空间的环境时,计算上是不可行的。为了解决计算复杂性问题并更好地模拟智能体内部协作,我们利用最近成功的邻域策略优化算法,该算法有效地探索了连续的动作空间,并通过元梯度方法引入了内在动机的概念,从而在多智能体协作设置中刺激个体智能体的行为。为此,我们设计代理奖励来量化个体代理级内在动机对团队级奖励的影响,并应用元梯度方法来利用这种附加,以便我们的算法可以有效地学习团队级累积奖励。在具有连续动作空间的各种多智能体强化学习基准环境中进行的实验表明,我们的算法不仅可以与现有的最先进的基准相媲美,而且可以显着降低训练时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta Proximal Policy Optimization for Cooperative Multi-Agent Continuous Control
In this paper we propose Multi-Agent Proxy Proximal Policy Optimization (MA3PO), a novel multi-agent deep reinforcement learning algorithm that tackles the challenge of cooperative continuous multi-agent control. Our method is driven by the observation that most existing multi-agent reinforcement learning algorithms mainly focus on discrete state/action spaces and are thus computationally infeasible when extended to environments with continuous state/action spaces. To address the issue of computational complexity and to better model intra-agent collaboration, we make use of the recently successful Proximal Policy Optimization algorithm that effectively explores of continuous action spaces, and incorporate the notion of intrinsic motivation via meta-gradient methods so as to stimulate the behavior of individual agents in cooperative multi-agent settings. Towards these ends, we design proxy rewards to quantify the effect of individual agent-level intrinsic motivation onto the team-level reward, and apply meta-gradient methods to leverage such an addition so that our algorithm can learn the team-level cumulative reward effectively. Experiments on various multi-agent reinforcement learning benchmark environments with continuous action spaces demonstrate that our algorithm is not only comparable with the existing state-of-the-art benchmarks, but also significantly reduces training time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1