采用有限元技术建立了三相并联电抗器的三维模型

H. B. Duc, T. P. Minh, Bao Doan Thanh, Duc-Quang Nguyen, V. D. Quoc
{"title":"采用有限元技术建立了三相并联电抗器的三维模型","authors":"H. B. Duc, T. P. Minh, Bao Doan Thanh, Duc-Quang Nguyen, V. D. Quoc","doi":"10.11591/ijape.v12.i3.pp321-330","DOIUrl":null,"url":null,"abstract":"The finite element technique is used widely for researchers and manufacturers to design and simulate electrical systems in general and electrical machines such as shunt reactors (SRs) and transformers in particular. Many papers have recently applied several methods to analyze magnetic fields, copper losses and joule power losses in the shunt reactors (SRs). In this research, the finite element technique with coupling to global quantities is proposed to investigate the voltage and current distributions in the windings, and compute the distribution of magnetic field in the air gap and along the air core of the SR, as well as copper and core losses. The developed method is directly applied to the practical SR of 91 MVAr and a rated voltage of 500 kV. The finite element method (FEM)-simulated results are validated with experimental results to ensure accuracy and reliability. This facilitate designing the reactor.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D model of three phase shunt reactors by using a finite element technique with coupling to global quantities\",\"authors\":\"H. B. Duc, T. P. Minh, Bao Doan Thanh, Duc-Quang Nguyen, V. D. Quoc\",\"doi\":\"10.11591/ijape.v12.i3.pp321-330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite element technique is used widely for researchers and manufacturers to design and simulate electrical systems in general and electrical machines such as shunt reactors (SRs) and transformers in particular. Many papers have recently applied several methods to analyze magnetic fields, copper losses and joule power losses in the shunt reactors (SRs). In this research, the finite element technique with coupling to global quantities is proposed to investigate the voltage and current distributions in the windings, and compute the distribution of magnetic field in the air gap and along the air core of the SR, as well as copper and core losses. The developed method is directly applied to the practical SR of 91 MVAr and a rated voltage of 500 kV. The finite element method (FEM)-simulated results are validated with experimental results to ensure accuracy and reliability. This facilitate designing the reactor.\",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v12.i3.pp321-330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v12.i3.pp321-330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限元技术被广泛应用于研究人员和制造商设计和模拟一般的电气系统,特别是电机,如并联电抗器和变压器。近年来,许多论文应用了几种方法来分析并联电抗器中的磁场、铜损耗和焦耳功率损耗。在这项研究中,提出了耦合到全局量的有限元技术来研究绕组中的电压和电流分布,并计算了SR的气隙和沿空芯的磁场分布,以及铜和铁芯损耗。该方法直接应用于91mvar、500kv额定电压的实际SR。有限元模拟结果与实验结果进行了验证,保证了计算的准确性和可靠性。这有利于反应堆的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 3D model of three phase shunt reactors by using a finite element technique with coupling to global quantities
The finite element technique is used widely for researchers and manufacturers to design and simulate electrical systems in general and electrical machines such as shunt reactors (SRs) and transformers in particular. Many papers have recently applied several methods to analyze magnetic fields, copper losses and joule power losses in the shunt reactors (SRs). In this research, the finite element technique with coupling to global quantities is proposed to investigate the voltage and current distributions in the windings, and compute the distribution of magnetic field in the air gap and along the air core of the SR, as well as copper and core losses. The developed method is directly applied to the practical SR of 91 MVAr and a rated voltage of 500 kV. The finite element method (FEM)-simulated results are validated with experimental results to ensure accuracy and reliability. This facilitate designing the reactor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fundamental frequency switching strategies of a seven level hybrid cascaded H-bridge multilevel inverter Recent research and developments of degradation assessment and its diagnosis methods for solar PV plant: a review Investigating the effects of corrosion parameters on the surface resistivity of transformer’s insulating paper using a two-level factorial design Maximum power optimization of a direct-drive wind turbine connected to PMSG using multi-objective genetic algorithm A wireless-power and data-transfer using inductive RF link and ASK modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1