{"title":"基于支持向量机统计技术的k-均值和模糊c -均值聚类的SGMM说话人识别分析","authors":"K. Manikandan, E. Chandra","doi":"10.3233/kes-210073","DOIUrl":null,"url":null,"abstract":"Speaker Identification denotes the speech samples of known speaker and it identifies the best matches of the input model. The SGMFC method is the combination of Sub Gaussian Mixture Model (SGMM) with the Mel-frequency Cepstral Coefficients (MFCC) for feature extraction. The SGMFC method minimizes the error rate, memory footprint and also computational throughput measure needs of a medium-vocabulary speaker identification system, supposed for preparation on a transportable or otherwise. Fuzzy C-means and k-means clustering are used in the SGMM method to attain the improved efficiency and their outcomes with parameters such as precision, sensitivity and specificity are compared.","PeriodicalId":210048,"journal":{"name":"Int. J. Knowl. Based Intell. Eng. Syst.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speaker identification analysis for SGMM with k-means and fuzzy C-means clustering using SVM statistical technique\",\"authors\":\"K. Manikandan, E. Chandra\",\"doi\":\"10.3233/kes-210073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker Identification denotes the speech samples of known speaker and it identifies the best matches of the input model. The SGMFC method is the combination of Sub Gaussian Mixture Model (SGMM) with the Mel-frequency Cepstral Coefficients (MFCC) for feature extraction. The SGMFC method minimizes the error rate, memory footprint and also computational throughput measure needs of a medium-vocabulary speaker identification system, supposed for preparation on a transportable or otherwise. Fuzzy C-means and k-means clustering are used in the SGMM method to attain the improved efficiency and their outcomes with parameters such as precision, sensitivity and specificity are compared.\",\"PeriodicalId\":210048,\"journal\":{\"name\":\"Int. J. Knowl. Based Intell. Eng. Syst.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Based Intell. Eng. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/kes-210073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Based Intell. Eng. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-210073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speaker identification analysis for SGMM with k-means and fuzzy C-means clustering using SVM statistical technique
Speaker Identification denotes the speech samples of known speaker and it identifies the best matches of the input model. The SGMFC method is the combination of Sub Gaussian Mixture Model (SGMM) with the Mel-frequency Cepstral Coefficients (MFCC) for feature extraction. The SGMFC method minimizes the error rate, memory footprint and also computational throughput measure needs of a medium-vocabulary speaker identification system, supposed for preparation on a transportable or otherwise. Fuzzy C-means and k-means clustering are used in the SGMM method to attain the improved efficiency and their outcomes with parameters such as precision, sensitivity and specificity are compared.