基于主题的网页推荐使用标签

Jing Peng, D. Zeng
{"title":"基于主题的网页推荐使用标签","authors":"Jing Peng, D. Zeng","doi":"10.1109/ISI.2009.5137324","DOIUrl":null,"url":null,"abstract":"Collaborative tagging sites allow users to save and annotate their favorite web contents with tags. These tags provide a novel source of information for collaborative filtering. This paper proposes a probabilistic approach to leverage information embedded in tags to improve the effectiveness of Web page recommendation in a social information management context. In our approach, the probability of a Web page visit by a user is estimated by summing up the relevance of this Web page to this user's tags, and then those pages with the highest probabilities are recommended. Experiments using two real-world collaborative tagging datasets show that our algorithms outperform the common collaborative filtering methods.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Topic-based web page recommendation using tags\",\"authors\":\"Jing Peng, D. Zeng\",\"doi\":\"10.1109/ISI.2009.5137324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative tagging sites allow users to save and annotate their favorite web contents with tags. These tags provide a novel source of information for collaborative filtering. This paper proposes a probabilistic approach to leverage information embedded in tags to improve the effectiveness of Web page recommendation in a social information management context. In our approach, the probability of a Web page visit by a user is estimated by summing up the relevance of this Web page to this user's tags, and then those pages with the highest probabilities are recommended. Experiments using two real-world collaborative tagging datasets show that our algorithms outperform the common collaborative filtering methods.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

协作标签网站允许用户用标签保存和注释他们喜欢的网页内容。这些标签为协同过滤提供了一种新的信息源。本文提出了一种概率方法,利用嵌入在标签中的信息来提高社交信息管理环境下网页推荐的有效性。在我们的方法中,通过汇总该Web页面与该用户标记的相关性来估计用户访问Web页面的概率,然后推荐那些具有最高概率的页面。使用两个真实协作标记数据集的实验表明,我们的算法优于常见的协同过滤方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topic-based web page recommendation using tags
Collaborative tagging sites allow users to save and annotate their favorite web contents with tags. These tags provide a novel source of information for collaborative filtering. This paper proposes a probabilistic approach to leverage information embedded in tags to improve the effectiveness of Web page recommendation in a social information management context. In our approach, the probability of a Web page visit by a user is estimated by summing up the relevance of this Web page to this user's tags, and then those pages with the highest probabilities are recommended. Experiments using two real-world collaborative tagging datasets show that our algorithms outperform the common collaborative filtering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1