基于噪声辅助多元EMD的MSSA地震随机噪声衰减

Weida Ni, Y. Lou, Xiaolu Xu, Z. Shan, Shouzhong Xue, Wei Wang
{"title":"基于噪声辅助多元EMD的MSSA地震随机噪声衰减","authors":"Weida Ni, Y. Lou, Xiaolu Xu, Z. Shan, Shouzhong Xue, Wei Wang","doi":"10.1109/ICARCE55724.2022.10046637","DOIUrl":null,"url":null,"abstract":"Seismic random noise reduction is a critical task for seismic data processing. However, because seismic data is a representatively broadband signal, it is challenging to distinguish and attenuate random noise that present throughout the whole frequency range. Furthermore, it might be challenging to adjust the settings of denoising methods. To overcome the aforementioned problems, we suggest a multichannel filtering approach, i.e., noise-assisted multi-variate empirical mode decomposition (NA-MEMD) based multichannel singular spectrum analysis (MSSA). To filter noisy seismic data, we use NA-MEMD to decompose the noisy seismic data into a number of band-limited intrinsic mode functions (IMFs) with various center frequencies and bandwidths. Note that multiple channels of a particular IMF have the same dominant frequency aids in more reduction of random noise. Then, for separating random noise and maintaining valid signals, we apply MSSA to each IMF. The denoising outcome is then achieved by adding all the filtered IMFs. To demonstrate the validity and effectiveness of the suggested approach, we apply it to synthetic and 3D real data, and compare with traditional denoising techniques.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic Random Noise Attenuation via Noise Assisted-multivariate EMD Based MSSA\",\"authors\":\"Weida Ni, Y. Lou, Xiaolu Xu, Z. Shan, Shouzhong Xue, Wei Wang\",\"doi\":\"10.1109/ICARCE55724.2022.10046637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic random noise reduction is a critical task for seismic data processing. However, because seismic data is a representatively broadband signal, it is challenging to distinguish and attenuate random noise that present throughout the whole frequency range. Furthermore, it might be challenging to adjust the settings of denoising methods. To overcome the aforementioned problems, we suggest a multichannel filtering approach, i.e., noise-assisted multi-variate empirical mode decomposition (NA-MEMD) based multichannel singular spectrum analysis (MSSA). To filter noisy seismic data, we use NA-MEMD to decompose the noisy seismic data into a number of band-limited intrinsic mode functions (IMFs) with various center frequencies and bandwidths. Note that multiple channels of a particular IMF have the same dominant frequency aids in more reduction of random noise. Then, for separating random noise and maintaining valid signals, we apply MSSA to each IMF. The denoising outcome is then achieved by adding all the filtered IMFs. To demonstrate the validity and effectiveness of the suggested approach, we apply it to synthetic and 3D real data, and compare with traditional denoising techniques.\",\"PeriodicalId\":416305,\"journal\":{\"name\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCE55724.2022.10046637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地震随机噪声的降噪是地震资料处理中的一项重要任务。然而,由于地震数据是代表性的宽带信号,因此区分和衰减整个频率范围内的随机噪声是一项挑战。此外,调整去噪方法的设置可能具有挑战性。为了克服上述问题,我们提出了一种多通道滤波方法,即基于噪声辅助多变量经验模态分解(NA-MEMD)的多通道奇异谱分析(MSSA)。为了过滤有噪声的地震数据,我们使用NA-MEMD将有噪声的地震数据分解成多个具有不同中心频率和带宽的带限本征模态函数(IMFs)。请注意,特定IMF的多个通道具有相同的主导频率,有助于更多地减少随机噪声。然后,为了分离随机噪声并保持有效信号,我们对每个IMF应用MSSA。然后通过添加所有过滤的imf来实现去噪结果。为了验证该方法的有效性,我们将其应用于合成数据和三维真实数据,并与传统的去噪技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Random Noise Attenuation via Noise Assisted-multivariate EMD Based MSSA
Seismic random noise reduction is a critical task for seismic data processing. However, because seismic data is a representatively broadband signal, it is challenging to distinguish and attenuate random noise that present throughout the whole frequency range. Furthermore, it might be challenging to adjust the settings of denoising methods. To overcome the aforementioned problems, we suggest a multichannel filtering approach, i.e., noise-assisted multi-variate empirical mode decomposition (NA-MEMD) based multichannel singular spectrum analysis (MSSA). To filter noisy seismic data, we use NA-MEMD to decompose the noisy seismic data into a number of band-limited intrinsic mode functions (IMFs) with various center frequencies and bandwidths. Note that multiple channels of a particular IMF have the same dominant frequency aids in more reduction of random noise. Then, for separating random noise and maintaining valid signals, we apply MSSA to each IMF. The denoising outcome is then achieved by adding all the filtered IMFs. To demonstrate the validity and effectiveness of the suggested approach, we apply it to synthetic and 3D real data, and compare with traditional denoising techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of MobileRobot Navigation System Based on ROS Platform Cooperative Pursuit in a Non-closed Bounded Domain 3D Reconstruction of Astronomical Site Selection Based on Multi-Source Remote Sensing Design and Implementation of Manipulator Based on Arduino Dynamic Reversible Data Hiding for Edge Contrast Enhancement of Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1