小型化CT试件的抗裂曲线测量

R. Chaouadi, M. Lambrecht, R. Gérard
{"title":"小型化CT试件的抗裂曲线测量","authors":"R. Chaouadi, M. Lambrecht, R. Gérard","doi":"10.1115/PVP2018-84690","DOIUrl":null,"url":null,"abstract":"The use of miniature compact tension (mini-CT) specimens for fracture mechanics was experimentally demonstrated to allow the characterization of ferritic steels in the transition regime. In particular, the master curve transition temperature T0 can confidently be determined according to the ASTM E1921 standard using mini-CT specimens. This means that specimen size effect is well taken into account if loss of constraint is limited by restricting the test temperature range to remain below the allowed maximum loading level. In the upper shelf ductile regime, where stable crack growth occurs, a number of challenges should be overcome to use such a geometry to derive the crack resistance curve, or JR-curve, transferrable to a structure. Indeed, despite a large scatter, the experimental data on several materials suggest a size effect that underestimates the crack resistance when reducing specimen size.\n The crack resistance behavior of several reactor pressure vessel materials was investigated with square-sized ligament compact tension specimens of various size ranging from 1 inch-thickness (B = 25 mm) to the smallest thickness (B = 4.2 mm) of the mini-CT. The main objective of this paper is to estimate the crack resistance behavior of RPV steels that would be obtained with a standard 1T-CT specimen by using mini-CT with the appropriate specimen size correction. After a series of scaling attempts that were not successful, based on a simple dimensional analysis, a simple analytical formulation based on specimen thickness and ligament is suggested to account for specimen size effect for the CT geometry. Reasonable agreement could generally be found on a number of RPV materials between crack resistance measured with mini-CT and standard 1T-CT specimens.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crack Resistance Curve Measurement With Miniaturized CT Specimen\",\"authors\":\"R. Chaouadi, M. Lambrecht, R. Gérard\",\"doi\":\"10.1115/PVP2018-84690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of miniature compact tension (mini-CT) specimens for fracture mechanics was experimentally demonstrated to allow the characterization of ferritic steels in the transition regime. In particular, the master curve transition temperature T0 can confidently be determined according to the ASTM E1921 standard using mini-CT specimens. This means that specimen size effect is well taken into account if loss of constraint is limited by restricting the test temperature range to remain below the allowed maximum loading level. In the upper shelf ductile regime, where stable crack growth occurs, a number of challenges should be overcome to use such a geometry to derive the crack resistance curve, or JR-curve, transferrable to a structure. Indeed, despite a large scatter, the experimental data on several materials suggest a size effect that underestimates the crack resistance when reducing specimen size.\\n The crack resistance behavior of several reactor pressure vessel materials was investigated with square-sized ligament compact tension specimens of various size ranging from 1 inch-thickness (B = 25 mm) to the smallest thickness (B = 4.2 mm) of the mini-CT. The main objective of this paper is to estimate the crack resistance behavior of RPV steels that would be obtained with a standard 1T-CT specimen by using mini-CT with the appropriate specimen size correction. After a series of scaling attempts that were not successful, based on a simple dimensional analysis, a simple analytical formulation based on specimen thickness and ligament is suggested to account for specimen size effect for the CT geometry. Reasonable agreement could generally be found on a number of RPV materials between crack resistance measured with mini-CT and standard 1T-CT specimens.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验证明,使用微型致密拉伸(mini-CT)试样进行断裂力学试验,可以表征铁素体钢的过渡状态。特别是,主曲线转变温度T0可以根据ASTM E1921标准使用mini-CT试样确定。这意味着如果通过限制测试温度范围保持在允许的最大加载水平以下来限制约束损失,则可以很好地考虑试样尺寸效应。在上大陆架延性状态下,裂缝会稳定地扩展,使用这种几何图形来推导可转移到结构的抗裂曲线或jr曲线,需要克服许多挑战。事实上,尽管有很大的分散,但几种材料的实验数据表明,当减小试样尺寸时,尺寸效应低估了抗裂性。采用从1英寸厚度(B = 25 mm)到最小厚度(B = 4.2 mm)的不同尺寸的方形韧带紧绷试样,研究了几种反应堆压力容器材料的抗裂性能。本文的主要目的是估计RPV钢的抗裂性能,该性能将通过使用带有适当试样尺寸校正的mini-CT获得标准1T-CT试样。在一系列的缩放尝试都不成功之后,基于简单的量纲分析,我们提出了一个基于试样厚度和韧带的简单分析公式,以解释CT几何形状的试样尺寸效应。在许多RPV材料的抗裂性能上,用mini-CT和标准1T-CT试样测量的结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crack Resistance Curve Measurement With Miniaturized CT Specimen
The use of miniature compact tension (mini-CT) specimens for fracture mechanics was experimentally demonstrated to allow the characterization of ferritic steels in the transition regime. In particular, the master curve transition temperature T0 can confidently be determined according to the ASTM E1921 standard using mini-CT specimens. This means that specimen size effect is well taken into account if loss of constraint is limited by restricting the test temperature range to remain below the allowed maximum loading level. In the upper shelf ductile regime, where stable crack growth occurs, a number of challenges should be overcome to use such a geometry to derive the crack resistance curve, or JR-curve, transferrable to a structure. Indeed, despite a large scatter, the experimental data on several materials suggest a size effect that underestimates the crack resistance when reducing specimen size. The crack resistance behavior of several reactor pressure vessel materials was investigated with square-sized ligament compact tension specimens of various size ranging from 1 inch-thickness (B = 25 mm) to the smallest thickness (B = 4.2 mm) of the mini-CT. The main objective of this paper is to estimate the crack resistance behavior of RPV steels that would be obtained with a standard 1T-CT specimen by using mini-CT with the appropriate specimen size correction. After a series of scaling attempts that were not successful, based on a simple dimensional analysis, a simple analytical formulation based on specimen thickness and ligament is suggested to account for specimen size effect for the CT geometry. Reasonable agreement could generally be found on a number of RPV materials between crack resistance measured with mini-CT and standard 1T-CT specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1