基于视觉和传感器的关节角步态分析系统的比较

Maria Kyrarini, Xingchen Wang, A. Gräser
{"title":"基于视觉和传感器的关节角步态分析系统的比较","authors":"Maria Kyrarini, Xingchen Wang, A. Gräser","doi":"10.1109/MeMeA.2015.7145231","DOIUrl":null,"url":null,"abstract":"Gait analysis has become recently a popular research field and been widely applied to clinical diagnosis of neurodegenerative diseases. Various low-cost sensor-based and vision-based systems are developed for capturing the hip and knee joint angles. However, the performances of these systems have not been validated and compared between each other. The purpose of this study is to set up an experiment and compare the performances of a sensor-based system with multiple inertial measurement units (IMUs), a vision-based gait analysis system with marker detection, and a markerless vision-based system on capturing the hip and knee joint angles during normal walking. The obtained measurements were validated with the data acquired from goniometers as ground truth measurement. The results indicate that the IMUs-based sensor system gives excellent performance with small errors, while vision systems produce acceptable results with slightly larger errors.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Comparison of vision-based and sensor-based systems for joint angle gait analysis\",\"authors\":\"Maria Kyrarini, Xingchen Wang, A. Gräser\",\"doi\":\"10.1109/MeMeA.2015.7145231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait analysis has become recently a popular research field and been widely applied to clinical diagnosis of neurodegenerative diseases. Various low-cost sensor-based and vision-based systems are developed for capturing the hip and knee joint angles. However, the performances of these systems have not been validated and compared between each other. The purpose of this study is to set up an experiment and compare the performances of a sensor-based system with multiple inertial measurement units (IMUs), a vision-based gait analysis system with marker detection, and a markerless vision-based system on capturing the hip and knee joint angles during normal walking. The obtained measurements were validated with the data acquired from goniometers as ground truth measurement. The results indicate that the IMUs-based sensor system gives excellent performance with small errors, while vision systems produce acceptable results with slightly larger errors.\",\"PeriodicalId\":277757,\"journal\":{\"name\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2015.7145231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

步态分析是近年来研究的热点,已广泛应用于神经退行性疾病的临床诊断。各种低成本的基于传感器和基于视觉的系统被开发用于捕捉髋关节和膝关节的角度。然而,这些系统的性能还没有得到验证和相互比较。本研究的目的是建立一个实验,并比较基于传感器的多惯性测量单元(imu)系统、基于视觉的标记检测步态分析系统和基于无标记的视觉系统在正常行走时捕获髋关节和膝关节角度的性能。用测角仪获取的数据作为地面真值测量,对所得测量结果进行了验证。结果表明,基于ims的传感器系统在误差较小的情况下具有优异的性能,而视觉系统在误差略大的情况下也具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of vision-based and sensor-based systems for joint angle gait analysis
Gait analysis has become recently a popular research field and been widely applied to clinical diagnosis of neurodegenerative diseases. Various low-cost sensor-based and vision-based systems are developed for capturing the hip and knee joint angles. However, the performances of these systems have not been validated and compared between each other. The purpose of this study is to set up an experiment and compare the performances of a sensor-based system with multiple inertial measurement units (IMUs), a vision-based gait analysis system with marker detection, and a markerless vision-based system on capturing the hip and knee joint angles during normal walking. The obtained measurements were validated with the data acquired from goniometers as ground truth measurement. The results indicate that the IMUs-based sensor system gives excellent performance with small errors, while vision systems produce acceptable results with slightly larger errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Needle detection by electro-localization for a needle EMG exam robotic simulator Evaluation of control modes for head motion-based control with motion sensors A novel automatically initialized level set approach based on region correlation for lumbar vertebrae CT image segmentation Smart environments using near-field communication and HTML5 New FEM 3D model for arm-cuff interface simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1