基于驾驶员模型的交叉口自动驾驶轨迹规划

O. Speidel, Maximilian Graf, Ankita Kaushik, Thanh Phan-Huu, A. Wedel, K. Dietmayer
{"title":"基于驾驶员模型的交叉口自动驾驶轨迹规划","authors":"O. Speidel, Maximilian Graf, Ankita Kaushik, Thanh Phan-Huu, A. Wedel, K. Dietmayer","doi":"10.1109/ICRAE50850.2020.9310863","DOIUrl":null,"url":null,"abstract":"Efficient trajectory planning for urban intersections is currently one of the most challenging tasks for an Autonomous Vehicle (AV). Courteous behavior towards other traffic participants, the AV’s comfort and its progression in the environment are the key aspects that determine the performance of trajectory planning algorithms. To capture these aspects, we propose a novel trajectory planning framework that ensures social compliance and simultaneously optimizes the AV’s comfort subject to kinematic constraints. The framework combines a local continuous optimization approach and an efficient driver model to ensure fast behavior prediction, maneuver generation and decision making over long horizons. The proposed framework is evaluated in different scenarios to demonstrate its capabilities in terms of the resulting trajectories and runtime.","PeriodicalId":296832,"journal":{"name":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Trajectory Planning for Automated Driving in Intersection Scenarios Using Driver Models\",\"authors\":\"O. Speidel, Maximilian Graf, Ankita Kaushik, Thanh Phan-Huu, A. Wedel, K. Dietmayer\",\"doi\":\"10.1109/ICRAE50850.2020.9310863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient trajectory planning for urban intersections is currently one of the most challenging tasks for an Autonomous Vehicle (AV). Courteous behavior towards other traffic participants, the AV’s comfort and its progression in the environment are the key aspects that determine the performance of trajectory planning algorithms. To capture these aspects, we propose a novel trajectory planning framework that ensures social compliance and simultaneously optimizes the AV’s comfort subject to kinematic constraints. The framework combines a local continuous optimization approach and an efficient driver model to ensure fast behavior prediction, maneuver generation and decision making over long horizons. The proposed framework is evaluated in different scenarios to demonstrate its capabilities in terms of the resulting trajectories and runtime.\",\"PeriodicalId\":296832,\"journal\":{\"name\":\"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAE50850.2020.9310863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE50850.2020.9310863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

城市十字路口的有效轨迹规划是当前自动驾驶汽车(AV)最具挑战性的任务之一。对其他交通参与者的礼貌行为,自动驾驶汽车的舒适性及其在环境中的进展是决定轨迹规划算法性能的关键方面。为了捕捉这些方面,我们提出了一种新的轨迹规划框架,以确保社会合规,同时优化自动驾驶汽车在运动学约束下的舒适性。该框架结合了局部连续优化方法和高效的驾驶员模型,以确保快速的行为预测、机动生成和长期决策。提出的框架在不同的场景中进行评估,以证明其在产生的轨迹和运行时方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory Planning for Automated Driving in Intersection Scenarios Using Driver Models
Efficient trajectory planning for urban intersections is currently one of the most challenging tasks for an Autonomous Vehicle (AV). Courteous behavior towards other traffic participants, the AV’s comfort and its progression in the environment are the key aspects that determine the performance of trajectory planning algorithms. To capture these aspects, we propose a novel trajectory planning framework that ensures social compliance and simultaneously optimizes the AV’s comfort subject to kinematic constraints. The framework combines a local continuous optimization approach and an efficient driver model to ensure fast behavior prediction, maneuver generation and decision making over long horizons. The proposed framework is evaluated in different scenarios to demonstrate its capabilities in terms of the resulting trajectories and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Occlusion Handling for Real Time Object Perception Network-based H∞ Filter Design for T-S Fuzzy Systems with a Hybrid Event-triggered Scheme Optimal Task Allocation in Human-Robotic Assembly Processes Design and Development of a Novel External Pipe Crawling Robot ExPiRo Autonomous Amphibious Vehicle for Monitoring and Collecting Marine Debris
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1