存在多重二甲醚干扰时l波段候选航空通信系统的性能

Hosseinali Jamal, D. Matolak
{"title":"存在多重二甲醚干扰时l波段候选航空通信系统的性能","authors":"Hosseinali Jamal, D. Matolak","doi":"10.1109/DASC.2016.7778040","DOIUrl":null,"url":null,"abstract":"Aeronautical vehicle use, and consequently, air-to-ground communication systems, are growing rapidly. A growing portion of these vehicles are unmanned aerial vehicles (UAVs) or unmanned aerial systems (UAS) operating in civil aviation systems. As a consequence of this growth, air traffic volume for these vehicles is increasing dramatically, and it is estimated that traffic density will at least double by 2025. This traffic growth has led civil aviation authorities to explore development of future communication infrastructures (FCI). The L-band digital aeronautical communication system one (L-DACS1) is one of the air-ground (AG) communication systems proposed by Eurocontrol. L-DACS1 is a multicarrier communication system whose channels will be deployed in between Distance Measurement Equipment (DME) channels in frequency. DME is a transponder-based radio navigation technology, and its channels are distributed in 1 MHz frequency increments in the L-band spectrum from 960 to 1164 MHz. In this paper we investigate the effect of DME as the main interference signal to AG FCI systems. Recently we proposed a new multicarrier L-band communication system based on filterbank multicarrier (FBMC), which has some significant advantages over L-DACS1. In this paper we briefly describe these systems and compare the performance of L-DACS1 and FBMC communication systems in the coverage volume of one cell of an L-band communication cellular network working in the area of multiple DME stations. We will show the advantage and robustness of the L-band FBMC system in suppressing the DME interference from several DME ground stations across a range of geometries. In our simulations we use a channel model proposed for hilly/suburban environments based on the channel measurement results obtained by NASA Glenn Research Center. We compare bit error ratio (BER) results, power spectral densities for L-DACS1 and FBMC communication systems, and show the advantages of FBMC as a promising candidate for FCI systems.","PeriodicalId":340472,"journal":{"name":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","volume":"722 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance of L-band aeronautical communication system candidates in the presence of multiple DME interferers\",\"authors\":\"Hosseinali Jamal, D. Matolak\",\"doi\":\"10.1109/DASC.2016.7778040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aeronautical vehicle use, and consequently, air-to-ground communication systems, are growing rapidly. A growing portion of these vehicles are unmanned aerial vehicles (UAVs) or unmanned aerial systems (UAS) operating in civil aviation systems. As a consequence of this growth, air traffic volume for these vehicles is increasing dramatically, and it is estimated that traffic density will at least double by 2025. This traffic growth has led civil aviation authorities to explore development of future communication infrastructures (FCI). The L-band digital aeronautical communication system one (L-DACS1) is one of the air-ground (AG) communication systems proposed by Eurocontrol. L-DACS1 is a multicarrier communication system whose channels will be deployed in between Distance Measurement Equipment (DME) channels in frequency. DME is a transponder-based radio navigation technology, and its channels are distributed in 1 MHz frequency increments in the L-band spectrum from 960 to 1164 MHz. In this paper we investigate the effect of DME as the main interference signal to AG FCI systems. Recently we proposed a new multicarrier L-band communication system based on filterbank multicarrier (FBMC), which has some significant advantages over L-DACS1. In this paper we briefly describe these systems and compare the performance of L-DACS1 and FBMC communication systems in the coverage volume of one cell of an L-band communication cellular network working in the area of multiple DME stations. We will show the advantage and robustness of the L-band FBMC system in suppressing the DME interference from several DME ground stations across a range of geometries. In our simulations we use a channel model proposed for hilly/suburban environments based on the channel measurement results obtained by NASA Glenn Research Center. We compare bit error ratio (BER) results, power spectral densities for L-DACS1 and FBMC communication systems, and show the advantages of FBMC as a promising candidate for FCI systems.\",\"PeriodicalId\":340472,\"journal\":{\"name\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"volume\":\"722 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2016.7778040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2016.7778040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

航空飞行器的使用,以及因此产生的空对地通信系统,正在迅速增长。在民用航空系统中操作的无人机(uav)或无人机系统(UAS)在这些飞行器中所占的比例越来越大。由于这种增长,这些车辆的空中交通量正在急剧增加,据估计,到2025年,交通密度将至少增加一倍。这种交通量的增长促使民航当局探索未来通信基础设施(FCI)的发展。l波段数字航空通信系统1 (L-DACS1)是欧空局提出的地空通信系统之一。L-DACS1是一种多载波通信系统,其信道将在频率上部署在距离测量设备(DME)信道之间。DME是一种基于应答器的无线电导航技术,其信道在960 ~ 1164 MHz的l波段频谱中以1 MHz的频率增量分布。本文研究了二甲醚作为主要干扰信号对AG FCI系统的影响。最近,我们提出了一种新的基于滤波器组多载波(FBMC)的l波段多载波通信系统,它比L-DACS1具有明显的优点。本文简要介绍了这些系统,并比较了L-DACS1和FBMC通信系统在l波段通信蜂窝网络的一个小区的覆盖体积下在多个DME站工作的性能。我们将展示l波段FBMC系统在抑制来自多个DME地面站的各种几何形状的DME干扰方面的优势和鲁棒性。在我们的模拟中,我们使用了基于美国宇航局格伦研究中心获得的通道测量结果提出的丘陵/郊区环境通道模型。我们比较了L-DACS1和FBMC通信系统的误码率(BER)结果和功率谱密度,并表明FBMC作为FCI系统的有前途的候选者的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of L-band aeronautical communication system candidates in the presence of multiple DME interferers
Aeronautical vehicle use, and consequently, air-to-ground communication systems, are growing rapidly. A growing portion of these vehicles are unmanned aerial vehicles (UAVs) or unmanned aerial systems (UAS) operating in civil aviation systems. As a consequence of this growth, air traffic volume for these vehicles is increasing dramatically, and it is estimated that traffic density will at least double by 2025. This traffic growth has led civil aviation authorities to explore development of future communication infrastructures (FCI). The L-band digital aeronautical communication system one (L-DACS1) is one of the air-ground (AG) communication systems proposed by Eurocontrol. L-DACS1 is a multicarrier communication system whose channels will be deployed in between Distance Measurement Equipment (DME) channels in frequency. DME is a transponder-based radio navigation technology, and its channels are distributed in 1 MHz frequency increments in the L-band spectrum from 960 to 1164 MHz. In this paper we investigate the effect of DME as the main interference signal to AG FCI systems. Recently we proposed a new multicarrier L-band communication system based on filterbank multicarrier (FBMC), which has some significant advantages over L-DACS1. In this paper we briefly describe these systems and compare the performance of L-DACS1 and FBMC communication systems in the coverage volume of one cell of an L-band communication cellular network working in the area of multiple DME stations. We will show the advantage and robustness of the L-band FBMC system in suppressing the DME interference from several DME ground stations across a range of geometries. In our simulations we use a channel model proposed for hilly/suburban environments based on the channel measurement results obtained by NASA Glenn Research Center. We compare bit error ratio (BER) results, power spectral densities for L-DACS1 and FBMC communication systems, and show the advantages of FBMC as a promising candidate for FCI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory optimisation for avionics-based GNSS integrity augmentation system Modeling standard for distributed control systems: IEC 61499 from industrial automation to aerospace Ontological knowledge representation for avionics decision-making support Conflict resolution for wind-optimal aircraft trajectories in North Atlantic oceanic airspace with wind uncertainties Flexible open architecture for UASs integration into the airspace: Paparazzi autopilot system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1