CADParser:一种面向B-Rep CAD的序列建模学习方法

Shengdi Zhou, Tianyi Tang, Bin Zhou
{"title":"CADParser:一种面向B-Rep CAD的序列建模学习方法","authors":"Shengdi Zhou, Tianyi Tang, Bin Zhou","doi":"10.24963/ijcai.2023/200","DOIUrl":null,"url":null,"abstract":"Computer-Aided Design (CAD) plays a crucial role in industrial manufacturing by providing geometry information and the construction workflow for manufactured objects. The construction information enables effective re-editing of parametric CAD models. While boundary representation (B-Rep) is the standard format for representing geometry structures, JSON format is an alternative due to the lack of uniform criteria for storing the construction workflow. Regrettably, most CAD models available on the Internet only offer geometry information, omitting the construction procedure and hampering creation efficiency. This paper proposes a learning approach CADParser to infer the underlying modeling sequences given a B-Rep CAD model. It achieves this by treating the CAD geometry structure as a graph and the construction workflow as a sequence. Since the existing CAD dataset only contains two operations (i.e., Sketch and Extrusion), limiting the diversity of the CAD model creation, we also introduce a large-scale dataset incorporating a more comprehensive range of operations such as Revolution, Fillet, and Chamfer. Each model includes both the geometry structure and the construction sequences. Extensive experiments demonstrate that our method can compete with the existing state-of-the-art methods quantitatively and qualitatively. Data is available at https://drive.google.com/CADParserData.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CADParser: A Learning Approach of Sequence Modeling for B-Rep CAD\",\"authors\":\"Shengdi Zhou, Tianyi Tang, Bin Zhou\",\"doi\":\"10.24963/ijcai.2023/200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-Aided Design (CAD) plays a crucial role in industrial manufacturing by providing geometry information and the construction workflow for manufactured objects. The construction information enables effective re-editing of parametric CAD models. While boundary representation (B-Rep) is the standard format for representing geometry structures, JSON format is an alternative due to the lack of uniform criteria for storing the construction workflow. Regrettably, most CAD models available on the Internet only offer geometry information, omitting the construction procedure and hampering creation efficiency. This paper proposes a learning approach CADParser to infer the underlying modeling sequences given a B-Rep CAD model. It achieves this by treating the CAD geometry structure as a graph and the construction workflow as a sequence. Since the existing CAD dataset only contains two operations (i.e., Sketch and Extrusion), limiting the diversity of the CAD model creation, we also introduce a large-scale dataset incorporating a more comprehensive range of operations such as Revolution, Fillet, and Chamfer. Each model includes both the geometry structure and the construction sequences. Extensive experiments demonstrate that our method can compete with the existing state-of-the-art methods quantitatively and qualitatively. Data is available at https://drive.google.com/CADParserData.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机辅助设计(CAD)通过提供制造对象的几何信息和施工流程,在工业制造中起着至关重要的作用。构造信息使参数化CAD模型的有效重新编辑成为可能。边界表示(B-Rep)是表示几何结构的标准格式,由于缺乏存储构造工作流的统一标准,JSON格式是另一种选择。遗憾的是,互联网上的CAD模型大多只提供几何信息,省略了施工过程,影响了创建效率。本文提出了一种学习方法CADParser来推断给定B-Rep CAD模型的底层建模序列。它通过将CAD几何结构视为图形,将施工工作流视为序列来实现这一目标。由于现有的CAD数据集只包含两种操作(即草图和挤压),限制了CAD模型创建的多样性,我们还引入了一个包含更全面操作范围的大规模数据集,如旋转、圆角和倒角。每个模型都包括几何结构和构造序列。大量的实验表明,我们的方法可以在数量和质量上与现有的最先进的方法竞争。相关数据可从https://drive.google.com/CADParserData获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CADParser: A Learning Approach of Sequence Modeling for B-Rep CAD
Computer-Aided Design (CAD) plays a crucial role in industrial manufacturing by providing geometry information and the construction workflow for manufactured objects. The construction information enables effective re-editing of parametric CAD models. While boundary representation (B-Rep) is the standard format for representing geometry structures, JSON format is an alternative due to the lack of uniform criteria for storing the construction workflow. Regrettably, most CAD models available on the Internet only offer geometry information, omitting the construction procedure and hampering creation efficiency. This paper proposes a learning approach CADParser to infer the underlying modeling sequences given a B-Rep CAD model. It achieves this by treating the CAD geometry structure as a graph and the construction workflow as a sequence. Since the existing CAD dataset only contains two operations (i.e., Sketch and Extrusion), limiting the diversity of the CAD model creation, we also introduce a large-scale dataset incorporating a more comprehensive range of operations such as Revolution, Fillet, and Chamfer. Each model includes both the geometry structure and the construction sequences. Extensive experiments demonstrate that our method can compete with the existing state-of-the-art methods quantitatively and qualitatively. Data is available at https://drive.google.com/CADParserData.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1