太平洋边缘(南极洲西部)磁异常源与成因的地球物理新资料

V. Soloviev, V. Bakhmutov, I. Korchagin, T. Yegorova
{"title":"太平洋边缘(南极洲西部)磁异常源与成因的地球物理新资料","authors":"V. Soloviev, V. Bakhmutov, I. Korchagin, T. Yegorova","doi":"10.33275/1727-7485.1(17).2018.28","DOIUrl":null,"url":null,"abstract":"During the seasonal work in the Ukrainian Antarctic expeditions (1997—2012), a significant amount of geological and geophysical studies were carried out. \nThe main objective of the study is to obtain new data on the distribution of deep heterogeneities in the structures of the region. It’s allowed to construct the geophysical models and to discuss the existing ideas about the stages of formation and evolution tectonic structures of the West Antarctica near the Antarctic Peninsula (AP). New geophysical models of the Earth's crust were used to study the possible nature of the Pacific Coast magnetic anomaly (PMA) near the AP. \nThe results of magnetic, seismic and geoelectric surveys in the region of the Antarctic Peninsula showed that active tectonic processes in the Meso — Cenozoic led to the of PMA magnetic sources forming along the edge of the AP. The spatial heterogeneity of the various segments of PMA can also be associated with a variety of depth, thickness and magnetic susceptibility of individual units that form the source of regional anomaly. The magnetic PMA sources in the Earth's crust can be limited in depth (up to 8—10 km) and consist of a series of bodies with different age, composition and magnetization. The shape of the PMA anomalies is significantly affected by numerous local intrusions located in the upper part of the earth's crust. In certain segments of the PMA, they form an additional horizon of magnetized bodies associated with the processes of young volcanism in the structures of the continental margin. \nConclusions. The materials of geophysical surveys and complex geological and geophysical models of the earth's crust and upper mantle were analyzed, which made it possible to identify structural features, evolution, and geodynamic processes of the development of regional structures, as well as to obtain new data on the possible nature of PMA. The total anomaly name (PMA) can formally integrate anomalies of different ages and origins. Numerous local intrusions of young (Cenozoic) age form an additional horizon of magnetized bodies associated with volcanic processes at the top of the crust. Some segments of the PMA may be associated with the processes of tectonic changes near the Antarctic — Scotia paleo-plate boundary, as well as teсtonic and magmatic activity in the areas of paleorift structures detection. New geophysical results for different PMA — segments from the Palmer Land to Powell Basin were used to summarize current ideas about the sources and origins of this positive magnetic anomaly.","PeriodicalId":370867,"journal":{"name":"Ukrainian Antarctic Journal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New Geophysical Data About the Pacific Margin (West Antarctica) Magnetic Anomaly Sources and Origin\",\"authors\":\"V. Soloviev, V. Bakhmutov, I. Korchagin, T. Yegorova\",\"doi\":\"10.33275/1727-7485.1(17).2018.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the seasonal work in the Ukrainian Antarctic expeditions (1997—2012), a significant amount of geological and geophysical studies were carried out. \\nThe main objective of the study is to obtain new data on the distribution of deep heterogeneities in the structures of the region. It’s allowed to construct the geophysical models and to discuss the existing ideas about the stages of formation and evolution tectonic structures of the West Antarctica near the Antarctic Peninsula (AP). New geophysical models of the Earth's crust were used to study the possible nature of the Pacific Coast magnetic anomaly (PMA) near the AP. \\nThe results of magnetic, seismic and geoelectric surveys in the region of the Antarctic Peninsula showed that active tectonic processes in the Meso — Cenozoic led to the of PMA magnetic sources forming along the edge of the AP. The spatial heterogeneity of the various segments of PMA can also be associated with a variety of depth, thickness and magnetic susceptibility of individual units that form the source of regional anomaly. The magnetic PMA sources in the Earth's crust can be limited in depth (up to 8—10 km) and consist of a series of bodies with different age, composition and magnetization. The shape of the PMA anomalies is significantly affected by numerous local intrusions located in the upper part of the earth's crust. In certain segments of the PMA, they form an additional horizon of magnetized bodies associated with the processes of young volcanism in the structures of the continental margin. \\nConclusions. The materials of geophysical surveys and complex geological and geophysical models of the earth's crust and upper mantle were analyzed, which made it possible to identify structural features, evolution, and geodynamic processes of the development of regional structures, as well as to obtain new data on the possible nature of PMA. The total anomaly name (PMA) can formally integrate anomalies of different ages and origins. Numerous local intrusions of young (Cenozoic) age form an additional horizon of magnetized bodies associated with volcanic processes at the top of the crust. Some segments of the PMA may be associated with the processes of tectonic changes near the Antarctic — Scotia paleo-plate boundary, as well as teсtonic and magmatic activity in the areas of paleorift structures detection. New geophysical results for different PMA — segments from the Palmer Land to Powell Basin were used to summarize current ideas about the sources and origins of this positive magnetic anomaly.\",\"PeriodicalId\":370867,\"journal\":{\"name\":\"Ukrainian Antarctic Journal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Antarctic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33275/1727-7485.1(17).2018.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Antarctic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33275/1727-7485.1(17).2018.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在乌克兰南极考察队的季节性工作期间(1997-2012年),进行了大量的地质和地球物理研究。研究的主要目的是获得该地区深部非均质性分布的新数据。建立了地球物理模型,讨论了南极半岛附近南极西部构造形成和演化阶段的现有观点。利用新的地壳地球物理模型对太平洋海岸磁异常(PMA)的可能性质进行了研究。南极半岛地区的磁、地震和地电测量结果表明,中地壳构造过程活跃新生代导致PMA磁源沿AP边缘形成,PMA各段磁源的空间非均质性还与形成区域异常源的单个单元的深度、厚度和磁化率的不同有关。地壳中的磁性PMA源深度有限(可达8-10 km),由一系列年龄、成分和磁化强度不同的体组成。PMA异常的形状受到位于地壳上部的大量局部侵入体的显著影响。在PMA的某些部分,它们形成了与大陆边缘构造中年轻火山作用过程相关的磁化体的附加层。结论。通过对地球物理调查资料和复杂的地壳、上地幔地质、地球物理模型的分析,可以识别区域构造发育的构造特征、演化和地球动力学过程,并获得关于PMA可能性质的新数据。总异常名称(PMA)可以形形化地整合不同年龄和成因的异常。许多年轻(新生代)时代的局部侵入形成了地壳顶部与火山作用相关的磁化体的附加层。PMA的某些片段可能与南极-斯科舍古板块边界附近的构造变化过程有关,也可能与古裂谷构造探测区的构造活动和岩浆活动有关。利用从帕尔默地到鲍威尔盆地不同PMA段的新地球物理结果,总结了目前关于这一正磁异常的来源和成因的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Geophysical Data About the Pacific Margin (West Antarctica) Magnetic Anomaly Sources and Origin
During the seasonal work in the Ukrainian Antarctic expeditions (1997—2012), a significant amount of geological and geophysical studies were carried out. The main objective of the study is to obtain new data on the distribution of deep heterogeneities in the structures of the region. It’s allowed to construct the geophysical models and to discuss the existing ideas about the stages of formation and evolution tectonic structures of the West Antarctica near the Antarctic Peninsula (AP). New geophysical models of the Earth's crust were used to study the possible nature of the Pacific Coast magnetic anomaly (PMA) near the AP. The results of magnetic, seismic and geoelectric surveys in the region of the Antarctic Peninsula showed that active tectonic processes in the Meso — Cenozoic led to the of PMA magnetic sources forming along the edge of the AP. The spatial heterogeneity of the various segments of PMA can also be associated with a variety of depth, thickness and magnetic susceptibility of individual units that form the source of regional anomaly. The magnetic PMA sources in the Earth's crust can be limited in depth (up to 8—10 km) and consist of a series of bodies with different age, composition and magnetization. The shape of the PMA anomalies is significantly affected by numerous local intrusions located in the upper part of the earth's crust. In certain segments of the PMA, they form an additional horizon of magnetized bodies associated with the processes of young volcanism in the structures of the continental margin. Conclusions. The materials of geophysical surveys and complex geological and geophysical models of the earth's crust and upper mantle were analyzed, which made it possible to identify structural features, evolution, and geodynamic processes of the development of regional structures, as well as to obtain new data on the possible nature of PMA. The total anomaly name (PMA) can formally integrate anomalies of different ages and origins. Numerous local intrusions of young (Cenozoic) age form an additional horizon of magnetized bodies associated with volcanic processes at the top of the crust. Some segments of the PMA may be associated with the processes of tectonic changes near the Antarctic — Scotia paleo-plate boundary, as well as teсtonic and magmatic activity in the areas of paleorift structures detection. New geophysical results for different PMA — segments from the Palmer Land to Powell Basin were used to summarize current ideas about the sources and origins of this positive magnetic anomaly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benthic wildlife underwater video recording during longline survey in Weddell Sea Modelling seasonal and intraseasonal variations of circulation,temperature, salinity and sea level in the Bellingshausen Seaand on the Antarctic Peninsula shelf Microclimatic variations of land surface temperatureon Galindez Island (western part of the Antarctic Peninsula) Assessment of the zonal asymmetry trend in Antarctic total ozonecolumn using TOMS measurements and CCMVal-2 models Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1