基于深度强化学习的ris辅助毫米波MIMO系统的实用设计

Wangyang Xu, Jiancheng An, Lu Gan, H. Liao
{"title":"基于深度强化学习的ris辅助毫米波MIMO系统的实用设计","authors":"Wangyang Xu, Jiancheng An, Lu Gan, H. Liao","doi":"10.1109/ICCC56324.2022.10065758","DOIUrl":null,"url":null,"abstract":"A revolutionary technology, reconfigurable intelligent surface (RIS), has emerged to enhance the signal transmission quality of wireless communications. This paper a RIS-assisted mmWave multiple-input multiple-output system, where practical finite discrete phase-shift constraints are crucial. Then, we discuss the connection between the channel state information (CSI) and the devices' location information in the mmWave band. To provide a model-free and CSI-free solution, the advanced deep reinforcement learning (DRL) technique is proposed for the RIS-assisted system based on the devices' location information. Moreover, we also apply the deep quantization neural network (DQNN) in the proposed DRL algorithm for the practical finite discrete phase-shift constraint. Finally, simulation results demonstrate the viability and efficacy of our proposed approach.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"15 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Practical Design Based on Deep Reinforcement Learning for RIS-Assisted mmWave MIMO Systems\",\"authors\":\"Wangyang Xu, Jiancheng An, Lu Gan, H. Liao\",\"doi\":\"10.1109/ICCC56324.2022.10065758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A revolutionary technology, reconfigurable intelligent surface (RIS), has emerged to enhance the signal transmission quality of wireless communications. This paper a RIS-assisted mmWave multiple-input multiple-output system, where practical finite discrete phase-shift constraints are crucial. Then, we discuss the connection between the channel state information (CSI) and the devices' location information in the mmWave band. To provide a model-free and CSI-free solution, the advanced deep reinforcement learning (DRL) technique is proposed for the RIS-assisted system based on the devices' location information. Moreover, we also apply the deep quantization neural network (DQNN) in the proposed DRL algorithm for the practical finite discrete phase-shift constraint. Finally, simulation results demonstrate the viability and efficacy of our proposed approach.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"15 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10065758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高无线通信的信号传输质量,出现了一种革命性的技术——可重构智能表面(RIS)。本文研究了ris辅助毫米波多输入多输出系统,其中实际的有限离散相移约束是至关重要的。然后,我们讨论了毫米波频段信道状态信息(CSI)与设备位置信息之间的联系。为了提供无模型和无csi的解决方案,提出了基于设备位置信息的高级深度强化学习(DRL)技术。此外,我们还将深度量化神经网络(DQNN)应用于实际的有限离散相移约束的DRL算法中。最后,仿真结果验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Practical Design Based on Deep Reinforcement Learning for RIS-Assisted mmWave MIMO Systems
A revolutionary technology, reconfigurable intelligent surface (RIS), has emerged to enhance the signal transmission quality of wireless communications. This paper a RIS-assisted mmWave multiple-input multiple-output system, where practical finite discrete phase-shift constraints are crucial. Then, we discuss the connection between the channel state information (CSI) and the devices' location information in the mmWave band. To provide a model-free and CSI-free solution, the advanced deep reinforcement learning (DRL) technique is proposed for the RIS-assisted system based on the devices' location information. Moreover, we also apply the deep quantization neural network (DQNN) in the proposed DRL algorithm for the practical finite discrete phase-shift constraint. Finally, simulation results demonstrate the viability and efficacy of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backward Edge Pointer Protection Technology Based on Dynamic Instrumentation Experimental Design of Router Debugging based Neighbor Cache States Change of IPv6 Nodes Sharing Big Data Storage for Air Traffic Management Study of Non-Orthogonal Multiple Access Technology for Satellite Communications A Joint Design of Polar Codes and Physical-layer Network Coding in Visible Light Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1