{"title":"5G无线回程网络的高吞吐量架构","authors":"H. M. Al-Khafaji, H. Majdi","doi":"10.1109/EEXPOLYTECH.2018.8564444","DOIUrl":null,"url":null,"abstract":"In this paper, the authors present a new network architecture based on the adaptation of small cells and millimeter wave (mm-wave) links for fifth-generation (5G) wireless backhaul networks. Besides, the throughput of 5G wireless backhaul networks is compared for several number of small cells, spectral efficiency (SE), and deployment scenarios. The results confirm that the proposed approach is high throughput solution compared to typical central and distribution network architectures.","PeriodicalId":296618,"journal":{"name":"2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High Throughput Architecture for 5G Wireless Backhaul Networks\",\"authors\":\"H. M. Al-Khafaji, H. Majdi\",\"doi\":\"10.1109/EEXPOLYTECH.2018.8564444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors present a new network architecture based on the adaptation of small cells and millimeter wave (mm-wave) links for fifth-generation (5G) wireless backhaul networks. Besides, the throughput of 5G wireless backhaul networks is compared for several number of small cells, spectral efficiency (SE), and deployment scenarios. The results confirm that the proposed approach is high throughput solution compared to typical central and distribution network architectures.\",\"PeriodicalId\":296618,\"journal\":{\"name\":\"2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEXPOLYTECH.2018.8564444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEXPOLYTECH.2018.8564444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A High Throughput Architecture for 5G Wireless Backhaul Networks
In this paper, the authors present a new network architecture based on the adaptation of small cells and millimeter wave (mm-wave) links for fifth-generation (5G) wireless backhaul networks. Besides, the throughput of 5G wireless backhaul networks is compared for several number of small cells, spectral efficiency (SE), and deployment scenarios. The results confirm that the proposed approach is high throughput solution compared to typical central and distribution network architectures.