基于统计学习的脊柱MRI椎体检测与分割方法

Szu-Hao Huang, S. Lai, C. Novak
{"title":"基于统计学习的脊柱MRI椎体检测与分割方法","authors":"Szu-Hao Huang, S. Lai, C. Novak","doi":"10.1109/ISBI.2008.4540948","DOIUrl":null,"url":null,"abstract":"Automatically extracting vertebra regions from a spinal magnetic resonance image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation method. Our system consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. We proposed an efficient and effective vertebra detector, which is trained by the improved AdaBoost algorithm, to locate the initial vertebra positions. Then, a robust estimation procedure is applied to fit all the vertebrae as a polynomial spinal curve to refine the vertebra detection results. Finally, an iterative segmentation algorithm based on normalized-cut energy minimization is applied to extract the precise vertebra regions from the detected windows. The experimental results show our system can achieve high accuracy on a number of testing 3D spinal MRI data sets.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A statistical learning appproach to vertebra detection and segmentation from spinal MRI\",\"authors\":\"Szu-Hao Huang, S. Lai, C. Novak\",\"doi\":\"10.1109/ISBI.2008.4540948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically extracting vertebra regions from a spinal magnetic resonance image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation method. Our system consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. We proposed an efficient and effective vertebra detector, which is trained by the improved AdaBoost algorithm, to locate the initial vertebra positions. Then, a robust estimation procedure is applied to fit all the vertebrae as a polynomial spinal curve to refine the vertebra detection results. Finally, an iterative segmentation algorithm based on normalized-cut energy minimization is applied to extract the precise vertebra regions from the detected windows. The experimental results show our system can achieve high accuracy on a number of testing 3D spinal MRI data sets.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4540948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从脊柱磁共振图像中自动提取椎体区域通常是智能脊柱磁共振图像诊断系统的第一步。在这项工作中,我们开发了一种全自动的椎体检测和分割方法。我们的制度包括三个阶段;即基于adaboost的椎体检测,通过鲁棒曲线拟合进行检测细化,通过迭代归一化切割算法进行椎体分割。我们提出了一种高效的椎体检测器,该检测器通过改进的AdaBoost算法训练来定位初始椎体位置。然后,应用鲁棒估计程序将所有椎体拟合为多项式脊柱曲线,以改进椎体检测结果。最后,采用一种基于归一化切割能量最小化的迭代分割算法,从检测窗口中提取精确的椎体区域。实验结果表明,该系统可以在多个测试的三维脊柱MRI数据集上达到较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A statistical learning appproach to vertebra detection and segmentation from spinal MRI
Automatically extracting vertebra regions from a spinal magnetic resonance image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation method. Our system consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. We proposed an efficient and effective vertebra detector, which is trained by the improved AdaBoost algorithm, to locate the initial vertebra positions. Then, a robust estimation procedure is applied to fit all the vertebrae as a polynomial spinal curve to refine the vertebra detection results. Finally, an iterative segmentation algorithm based on normalized-cut energy minimization is applied to extract the precise vertebra regions from the detected windows. The experimental results show our system can achieve high accuracy on a number of testing 3D spinal MRI data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1