基于欧几里德距离和余弦相似度的入侵检测模型特征选择

A. Suebsing, N. Hiransakolwong
{"title":"基于欧几里德距离和余弦相似度的入侵检测模型特征选择","authors":"A. Suebsing, N. Hiransakolwong","doi":"10.1109/ACIIDS.2009.23","DOIUrl":null,"url":null,"abstract":"Nowadays, data mining plays an important role in many sciences, including intrusion detection system (IDS). However, one of the essential steps of data mining is feature selection, because feature selection can help improve the efficiency of prediction rate. The previous researches, selecting features in the raw data, are difficult to implement. This paper proposes feature selection based on Euclidean Distance and Cosine Similarity which ease to implement. The experiment results show that the proposed approach can select a robust feature subset to build models for detecting known and unknown attack patterns of computer network connections. This proposed approach can improve the performance of a true positive intrusion detection rate.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Feature Selection Using Euclidean Distance and Cosine Similarity for Intrusion Detection Model\",\"authors\":\"A. Suebsing, N. Hiransakolwong\",\"doi\":\"10.1109/ACIIDS.2009.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, data mining plays an important role in many sciences, including intrusion detection system (IDS). However, one of the essential steps of data mining is feature selection, because feature selection can help improve the efficiency of prediction rate. The previous researches, selecting features in the raw data, are difficult to implement. This paper proposes feature selection based on Euclidean Distance and Cosine Similarity which ease to implement. The experiment results show that the proposed approach can select a robust feature subset to build models for detecting known and unknown attack patterns of computer network connections. This proposed approach can improve the performance of a true positive intrusion detection rate.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

如今,数据挖掘在包括入侵检测系统在内的许多科学领域中发挥着重要作用。然而,特征选择是数据挖掘的关键步骤之一,因为特征选择有助于提高预测率的效率。以往的研究都是在原始数据中选择特征,难以实现。本文提出了基于欧氏距离和余弦相似度的特征选择方法,该方法易于实现。实验结果表明,该方法可以选择一个鲁棒的特征子集来建立模型,用于检测计算机网络连接的已知和未知攻击模式。该方法可以提高真正入侵检测率的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Selection Using Euclidean Distance and Cosine Similarity for Intrusion Detection Model
Nowadays, data mining plays an important role in many sciences, including intrusion detection system (IDS). However, one of the essential steps of data mining is feature selection, because feature selection can help improve the efficiency of prediction rate. The previous researches, selecting features in the raw data, are difficult to implement. This paper proposes feature selection based on Euclidean Distance and Cosine Similarity which ease to implement. The experiment results show that the proposed approach can select a robust feature subset to build models for detecting known and unknown attack patterns of computer network connections. This proposed approach can improve the performance of a true positive intrusion detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Data-Searching Algorithms for a Real-Time Information-Delivery System Fuzzy Classification of Incomplete Data with Adaptive Volume Exploring the Use of Social Communications Technologies in Tasks and Its Performance in Organizations Implicit Camera Calibration Using MultiLayer Perceptron Type Neural Network Improved Letter Weighting Feature Selection on Arabic Script Language Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1