Thibaut Jacob, G. Bailly, É. Lecolinet, Géry Casiez, M. Teyssier
{"title":"桌面轨道相机运动使用旋转头部运动","authors":"Thibaut Jacob, G. Bailly, É. Lecolinet, Géry Casiez, M. Teyssier","doi":"10.1145/2983310.2985758","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how head movements can serve to change the viewpoint in 3D applications, especially when the viewpoint needs to be changed quickly and temporarily to disambiguate the view. We study how to use yaw and roll head movements to perform orbital camera control, i.e., to rotate the camera around a specific point in the scene. We report on four user studies. Study 1 evaluates the useful resolution of head movements. Study 2 informs about visual and physical comfort. Study 3 compares two interaction techniques, designed by taking into account the results of the two previous studies. Results show that head roll is more efficient than head yaw for orbital camera control when interacting with a screen. Finally, Study 4 compares head roll with a standard technique relying on the mouse and the keyboard. Moreover, users were allowed to use both techniques at their convenience in a second stage. Results show that users prefer and are faster (14.5%) with the head control technique.","PeriodicalId":185819,"journal":{"name":"Proceedings of the 2016 Symposium on Spatial User Interaction","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Desktop Orbital Camera Motions Using Rotational Head Movements\",\"authors\":\"Thibaut Jacob, G. Bailly, É. Lecolinet, Géry Casiez, M. Teyssier\",\"doi\":\"10.1145/2983310.2985758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate how head movements can serve to change the viewpoint in 3D applications, especially when the viewpoint needs to be changed quickly and temporarily to disambiguate the view. We study how to use yaw and roll head movements to perform orbital camera control, i.e., to rotate the camera around a specific point in the scene. We report on four user studies. Study 1 evaluates the useful resolution of head movements. Study 2 informs about visual and physical comfort. Study 3 compares two interaction techniques, designed by taking into account the results of the two previous studies. Results show that head roll is more efficient than head yaw for orbital camera control when interacting with a screen. Finally, Study 4 compares head roll with a standard technique relying on the mouse and the keyboard. Moreover, users were allowed to use both techniques at their convenience in a second stage. Results show that users prefer and are faster (14.5%) with the head control technique.\",\"PeriodicalId\":185819,\"journal\":{\"name\":\"Proceedings of the 2016 Symposium on Spatial User Interaction\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Symposium on Spatial User Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983310.2985758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Symposium on Spatial User Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983310.2985758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Desktop Orbital Camera Motions Using Rotational Head Movements
In this paper, we investigate how head movements can serve to change the viewpoint in 3D applications, especially when the viewpoint needs to be changed quickly and temporarily to disambiguate the view. We study how to use yaw and roll head movements to perform orbital camera control, i.e., to rotate the camera around a specific point in the scene. We report on four user studies. Study 1 evaluates the useful resolution of head movements. Study 2 informs about visual and physical comfort. Study 3 compares two interaction techniques, designed by taking into account the results of the two previous studies. Results show that head roll is more efficient than head yaw for orbital camera control when interacting with a screen. Finally, Study 4 compares head roll with a standard technique relying on the mouse and the keyboard. Moreover, users were allowed to use both techniques at their convenience in a second stage. Results show that users prefer and are faster (14.5%) with the head control technique.