S. Mariani, F. Zambonelli, Ákos Tényi, Isaac Cano, J. Roca
{"title":"风险预测即服务:促进互操作性和协作的决策支持体系结构","authors":"S. Mariani, F. Zambonelli, Ákos Tényi, Isaac Cano, J. Roca","doi":"10.1109/CBMS.2019.00069","DOIUrl":null,"url":null,"abstract":"Clinical research and practice are rapidly changing mostly due to Information and Communication Technology, especially, as Machine Learning (ML) offers great potential for predictive and personalised medicine. Nevertheless, barriers are still existing for widespread adoption of ML tools, as highlighted by studies from the European Union. In this paper, we propose an architecture for a Decision Support System assisting clinicians in assessing health risk of patients by delivering \"Risk Prediction as a Service\". By leveraging standard web technologies as well as the PMML and PFA formats for exchange of trained models, we achieve ubiquitous access to predictions, ease of deployment, and seamless interoperability, while promoting collaboration.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Risk Prediction as a Service: a DSS Architecture Promoting Interoperability and Collaboration\",\"authors\":\"S. Mariani, F. Zambonelli, Ákos Tényi, Isaac Cano, J. Roca\",\"doi\":\"10.1109/CBMS.2019.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical research and practice are rapidly changing mostly due to Information and Communication Technology, especially, as Machine Learning (ML) offers great potential for predictive and personalised medicine. Nevertheless, barriers are still existing for widespread adoption of ML tools, as highlighted by studies from the European Union. In this paper, we propose an architecture for a Decision Support System assisting clinicians in assessing health risk of patients by delivering \\\"Risk Prediction as a Service\\\". By leveraging standard web technologies as well as the PMML and PFA formats for exchange of trained models, we achieve ubiquitous access to predictions, ease of deployment, and seamless interoperability, while promoting collaboration.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Risk Prediction as a Service: a DSS Architecture Promoting Interoperability and Collaboration
Clinical research and practice are rapidly changing mostly due to Information and Communication Technology, especially, as Machine Learning (ML) offers great potential for predictive and personalised medicine. Nevertheless, barriers are still existing for widespread adoption of ML tools, as highlighted by studies from the European Union. In this paper, we propose an architecture for a Decision Support System assisting clinicians in assessing health risk of patients by delivering "Risk Prediction as a Service". By leveraging standard web technologies as well as the PMML and PFA formats for exchange of trained models, we achieve ubiquitous access to predictions, ease of deployment, and seamless interoperability, while promoting collaboration.