算法机制设计中的黑盒随机约简

S. Dughmi, T. Roughgarden
{"title":"算法机制设计中的黑盒随机约简","authors":"S. Dughmi, T. Roughgarden","doi":"10.1137/110843654","DOIUrl":null,"url":null,"abstract":"We give the first black-box reduction from arbitrary approximation algorithms to truthful approximation mechanisms for a non-trivial class of multi-parameter problems. Specifically, we prove that every packing problem that admits an FPTAS also admits a truthful-in-expectation randomized mechanism that is an FPTAS. Our reduction makes novel use of smoothed analysis, by employing small perturbations as a tool in algorithmic mechanism design. We develop a “duality'' between linear perturbations of the objective function of an optimization problem and of its feasible set, and use the “primal'' and “dual'' viewpoints to prove the running time bound and the truthfulness guarantee, respectively, for our mechanism.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Black-Box Randomized Reductions in Algorithmic Mechanism Design\",\"authors\":\"S. Dughmi, T. Roughgarden\",\"doi\":\"10.1137/110843654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give the first black-box reduction from arbitrary approximation algorithms to truthful approximation mechanisms for a non-trivial class of multi-parameter problems. Specifically, we prove that every packing problem that admits an FPTAS also admits a truthful-in-expectation randomized mechanism that is an FPTAS. Our reduction makes novel use of smoothed analysis, by employing small perturbations as a tool in algorithmic mechanism design. We develop a “duality'' between linear perturbations of the objective function of an optimization problem and of its feasible set, and use the “primal'' and “dual'' viewpoints to prove the running time bound and the truthfulness guarantee, respectively, for our mechanism.\",\"PeriodicalId\":228365,\"journal\":{\"name\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/110843654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/110843654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

针对一类非平凡的多参数问题,首次给出了从任意近似算法到真实近似机制的黑盒约简。具体来说,我们证明了每个包含FPTAS的包装问题也包含一个期望真实随机机制,即FPTAS。我们的简化使平滑分析的新颖使用,通过采用小扰动作为算法机制设计的工具。我们建立了优化问题目标函数的线性扰动与其可行集的“对偶性”,并分别用“原始”和“对偶”的观点证明了我们的机制的运行时间界限和真实性保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Black-Box Randomized Reductions in Algorithmic Mechanism Design
We give the first black-box reduction from arbitrary approximation algorithms to truthful approximation mechanisms for a non-trivial class of multi-parameter problems. Specifically, we prove that every packing problem that admits an FPTAS also admits a truthful-in-expectation randomized mechanism that is an FPTAS. Our reduction makes novel use of smoothed analysis, by employing small perturbations as a tool in algorithmic mechanism design. We develop a “duality'' between linear perturbations of the objective function of an optimization problem and of its feasible set, and use the “primal'' and “dual'' viewpoints to prove the running time bound and the truthfulness guarantee, respectively, for our mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Computational Complexity of Coin Flipping The Monotone Complexity of k-clique on Random Graphs Local List Decoding with a Constant Number of Queries Agnostically Learning under Permutation Invariant Distributions Pseudorandom Generators for Regular Branching Programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1