一个用于单词和感知计算的Python软件库

D. Sharma, Prashant K. Gupta, Javier Andreu-Perez, J. Mendel, Luis Martínez-López
{"title":"一个用于单词和感知计算的Python软件库","authors":"D. Sharma, Prashant K. Gupta, Javier Andreu-Perez, J. Mendel, Luis Martínez-López","doi":"10.1109/FUZZ45933.2021.9494557","DOIUrl":null,"url":null,"abstract":"Computing with Words (CWW) methodology has been used to design intelligent systems which make decisions by manipulating the linguistic information, like human beings. Human beings naturally understand (and express) themselves linguistically, and hence can reason (and make decision) just with linguistic information without any numerical measure. Perceptual Computing makes use of type 2 fuzzy sets for modeling the words in the CWW paradigm. This use of type-2 fuzzy sets enables better representation of the inherent uncertainty in the fuzzy linguistic semantics on numerous problems. To realise the potential of Perceptual Computing, its MATLAB implementation has been made freely available to the end-users/ researchers, and MATLAB is a proprietary development environment. Therefore, this contribution aims at proposing a python implementation of the Perceptual Computing, or its main processing element the perceptual computer that consists of three components viz., encoder, CWW engine and decoder. Our python implementation provides the end user with a seamless blending amongst all three components, which does not exist yet, to the best of our knowledge.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Python Software Library for Computing with Words and Perceptions\",\"authors\":\"D. Sharma, Prashant K. Gupta, Javier Andreu-Perez, J. Mendel, Luis Martínez-López\",\"doi\":\"10.1109/FUZZ45933.2021.9494557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing with Words (CWW) methodology has been used to design intelligent systems which make decisions by manipulating the linguistic information, like human beings. Human beings naturally understand (and express) themselves linguistically, and hence can reason (and make decision) just with linguistic information without any numerical measure. Perceptual Computing makes use of type 2 fuzzy sets for modeling the words in the CWW paradigm. This use of type-2 fuzzy sets enables better representation of the inherent uncertainty in the fuzzy linguistic semantics on numerous problems. To realise the potential of Perceptual Computing, its MATLAB implementation has been made freely available to the end-users/ researchers, and MATLAB is a proprietary development environment. Therefore, this contribution aims at proposing a python implementation of the Perceptual Computing, or its main processing element the perceptual computer that consists of three components viz., encoder, CWW engine and decoder. Our python implementation provides the end user with a seamless blending amongst all three components, which does not exist yet, to the best of our knowledge.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

词语计算(CWW)方法已经被用来设计智能系统,它通过操纵语言信息来做出决策,就像人类一样。人类自然地通过语言来理解(和表达)自己,因此可以仅用语言信息进行推理(和决策),而无需任何数字度量。感知计算利用2型模糊集对CWW范式中的单词进行建模。这种二类模糊集的使用可以更好地表示模糊语言语义在许多问题上的固有不确定性。为了实现感知计算的潜力,其MATLAB实现已经免费提供给最终用户/研究人员,并且MATLAB是一个专有的开发环境。因此,本贡献旨在提出感知计算的python实现,或其主要处理元素感知计算机,由三个组件组成,即编码器,CWW引擎和解码器。我们的python实现为最终用户提供了这三个组件之间的无缝融合,据我们所知,这还不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Python Software Library for Computing with Words and Perceptions
Computing with Words (CWW) methodology has been used to design intelligent systems which make decisions by manipulating the linguistic information, like human beings. Human beings naturally understand (and express) themselves linguistically, and hence can reason (and make decision) just with linguistic information without any numerical measure. Perceptual Computing makes use of type 2 fuzzy sets for modeling the words in the CWW paradigm. This use of type-2 fuzzy sets enables better representation of the inherent uncertainty in the fuzzy linguistic semantics on numerous problems. To realise the potential of Perceptual Computing, its MATLAB implementation has been made freely available to the end-users/ researchers, and MATLAB is a proprietary development environment. Therefore, this contribution aims at proposing a python implementation of the Perceptual Computing, or its main processing element the perceptual computer that consists of three components viz., encoder, CWW engine and decoder. Our python implementation provides the end user with a seamless blending amongst all three components, which does not exist yet, to the best of our knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1