在一个完整的转子系统中捕获BW区域

Fatima AlHammadi, M. Al-Shudeifat, Oleg Shiryayev
{"title":"在一个完整的转子系统中捕获BW区域","authors":"Fatima AlHammadi, M. Al-Shudeifat, Oleg Shiryayev","doi":"10.1115/IMECE2018-87480","DOIUrl":null,"url":null,"abstract":"Aircraft engines, aerospace rotating equipment, gas turbines, compressors, and rotors in several industrial and aerospace applications approach their nominal operational speeds after the passage through at least one of their critical rotational speeds. During the passage through the critical speeds, elevation in vibration amplitudes is usually observed due to the effect of residual unbalance in these real-life applications rotors. In all of the reported literature, the theoretical and numerical simulation results and the related Campbell diagrams suggest that the backward whirl (BW) zone should precede the passage through the critical forward whirl (FW) speed/speeds of such systems. Here, the existence of zones of rotational speeds at which BW orbits are expected to appear will be investigated immediately before and after the passage through the critical FW speed. Accordingly, startup operations of two different configurations of crack-free rotor-disk systems are considered in this numerical and experimental study. It is found out that there exist zone/zones of the shaft rotational speeds at which BW orbits are experimentally captured where these zones are localized immediately after the passage through the critical FW rotational speed during the startup operations. These BW zones are strongly affected by the acceleration of the shaft during the transient startup operations. These findings suggests that the BW should not necessarily precede the critical FW speed as suggested by the related Campbell diagrams.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Capturing BW Zone in an Intact Rotor System\",\"authors\":\"Fatima AlHammadi, M. Al-Shudeifat, Oleg Shiryayev\",\"doi\":\"10.1115/IMECE2018-87480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aircraft engines, aerospace rotating equipment, gas turbines, compressors, and rotors in several industrial and aerospace applications approach their nominal operational speeds after the passage through at least one of their critical rotational speeds. During the passage through the critical speeds, elevation in vibration amplitudes is usually observed due to the effect of residual unbalance in these real-life applications rotors. In all of the reported literature, the theoretical and numerical simulation results and the related Campbell diagrams suggest that the backward whirl (BW) zone should precede the passage through the critical forward whirl (FW) speed/speeds of such systems. Here, the existence of zones of rotational speeds at which BW orbits are expected to appear will be investigated immediately before and after the passage through the critical FW speed. Accordingly, startup operations of two different configurations of crack-free rotor-disk systems are considered in this numerical and experimental study. It is found out that there exist zone/zones of the shaft rotational speeds at which BW orbits are experimentally captured where these zones are localized immediately after the passage through the critical FW rotational speed during the startup operations. These BW zones are strongly affected by the acceleration of the shaft during the transient startup operations. These findings suggests that the BW should not necessarily precede the critical FW speed as suggested by the related Campbell diagrams.\",\"PeriodicalId\":197121,\"journal\":{\"name\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

航空发动机、航空航天旋转设备、燃气轮机、压气机和一些工业和航空航天应用中的转子在通过至少一个临界转速后接近其标称运行速度。在通过临界转速的过程中,由于这些实际应用中的残余不平衡的影响,通常会观察到振动幅值的升高。在所有已报道的文献中,理论和数值模拟结果以及相关的Campbell图都表明,此类系统的后旋流(BW)区应该先于临界前旋流(FW)速度/速度的通过。在这里,将在通过临界FW速度之前和之后立即研究BW轨道预计出现的转速区域的存在性。因此,本文在数值和实验研究中考虑了两种不同结构的无裂纹转子-盘系统的启动过程。研究发现,在启动运行过程中,通过临界FW转速后,轴转速存在一个或多个实验捕捉到BW轨道的区域,这些区域在通过临界FW转速后立即定位。在瞬态启动过程中,这些BW区域受到轴加速度的强烈影响。这些发现表明,如坎贝尔图所示,体重并不一定在临界FW速度之前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capturing BW Zone in an Intact Rotor System
Aircraft engines, aerospace rotating equipment, gas turbines, compressors, and rotors in several industrial and aerospace applications approach their nominal operational speeds after the passage through at least one of their critical rotational speeds. During the passage through the critical speeds, elevation in vibration amplitudes is usually observed due to the effect of residual unbalance in these real-life applications rotors. In all of the reported literature, the theoretical and numerical simulation results and the related Campbell diagrams suggest that the backward whirl (BW) zone should precede the passage through the critical forward whirl (FW) speed/speeds of such systems. Here, the existence of zones of rotational speeds at which BW orbits are expected to appear will be investigated immediately before and after the passage through the critical FW speed. Accordingly, startup operations of two different configurations of crack-free rotor-disk systems are considered in this numerical and experimental study. It is found out that there exist zone/zones of the shaft rotational speeds at which BW orbits are experimentally captured where these zones are localized immediately after the passage through the critical FW rotational speed during the startup operations. These BW zones are strongly affected by the acceleration of the shaft during the transient startup operations. These findings suggests that the BW should not necessarily precede the critical FW speed as suggested by the related Campbell diagrams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vibration Absorption in a Nonlinear Metamaterial Beam Incorporating Shape Memory Alloys Mechanical Design and Development of a Payload for Structural Health Monitoring Experiments on the International Space Station Ultrasonic Characterization of the Elastic Constants in an Aging Ti-6Al-4V ELI Alloy An Experimental Approach in Defect Detection of a Single Row Ball Bearing Using Noise Generation Signal Development and Design of the Dynamic Vibration Absorber Using Magneto-Rheological Elastomer for the Weight and Power Consumption Saving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1