关于感染性休克死亡率预测的自适应状态知识提取

R. Brause
{"title":"关于感染性休克死亡率预测的自适应状态知识提取","authors":"R. Brause","doi":"10.1109/TAI.2002.1180781","DOIUrl":null,"url":null,"abstract":"The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This paper models medical symptoms as observations cased by transitions between hidden Markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"About adaptive state knowledge extraction for septic shock mortality prediction\",\"authors\":\"R. Brause\",\"doi\":\"10.1109/TAI.2002.1180781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This paper models medical symptoms as observations cased by transitions between hidden Markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

死亡率的早期预测是重症监护医学尚未解决的问题之一。本文将医学症状建模为由隐马尔可夫状态之间的转换引起的观察结果。学习潜在的状态转移概率导致预测成功率约为91%。讨论了结果,并将其与所使用的模型联系起来。最后,反映了使用该模型的依据:脓毒性休克数据中是否存在状态?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
About adaptive state knowledge extraction for septic shock mortality prediction
The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This paper models medical symptoms as observations cased by transitions between hidden Markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1